Hashtrie

An early experiment

Martin Josefsson <gandalf@wlug.westbo.se> Netfilter Workshop 2005 (051005)

What 1s 1t?

* It's a not very known datastructure, think of it as a
tree of multiple hashtables.

* It's more complicated than a regular hashtable but
nicer to caches and with todays machines where
cpus are so much faster than memory it's a nice
feature.

Do we need 1t?

* What is the problem with current hashtable?

* What about performance?

* Many questions, no real answers, the hashtrie 1s
still 1n development.

Current hashtable situation

* Current conntrack uses a regular hashtable.

* [t's performance 1s good when sized properly.

* But when improperly sized its performance 1s
awful.

* Generally users don't understand that they have to
increase the size of the hashtable in addition to
increasing the number of buckets, this also goes for
network admins.

Data

Hashtable lookup performance

4000000,
3750000 |
3500000
3250000 - -
3000000 %
2750000

2500000 %

2250000 o

2000000+ o :ootup h
1750000 ¢ lookup nomatc

Lookups /s

1500000 O
1250000 :
1000000 \\\\‘
750000 I
500000 e m
250000 - e
0 T T T T T
2:1 1:1 1:2 1:4 1:8 1:16 1:32

Ratio (buckets : conntracks)

=
\

Hashtable pertormance

* The default configuration 1s the 1:8 ratio of
buckets:conntracks.

 Each conntrack results in two entries 1n the
hashtable, one for each tuple (direction). This
gives an average of 16 entries per bucket when
the ratio 1s 1:8

* Increasing the number of buckets, thus lowering
the ratio, will increase the performance greatly
for lookups. But 1t also adds other problems.

Lookups /s

Data #2

Hashtable lookup performance #?2

4000000
3750000~
3500000~
3250000~
3000000~
2750000~
2500000~
2250000~

2000000
1750000

[lookup
B lookup nomatch

1500000
1250000
1000000
750000 -
500000~
250000 -

O,

2:1 hashtri 1:1 1:2 1:8
e

Ratio / Type

Inserts / Deletes / s

10000000 -
9000000 -
8000000 -
7000000~
6000000 -
5000000
4000000 -
3000000
2000000 -
1000000~

0-

Insert/Delete performance

2:1

Data #3

hashtrie 1:1
Ratio / Type

1:2

[linsert
B delete

Details

struct hashentry {

struct hashentry *child,;

us counter;

hashbits t hashbits[NUMENTRY];
struct ip conntrack tuple *members[NUMENTRY];
unsigned char filler[PADNUM];

} _attribute ((packed));

hashtable = malloc(NUM * sizeof(struct hashentry));
bucketnr = hash & (NUM - 1);
bucket = &hashtable[bucketnr];

Details #2

When a bucket gets full we expand from that bucket into a new
hashtable that is identical to the toplevel hashtable.

bucket->child = (void *)malloc(NUM * sizeof(struct hashentry));

Then we add the new entry to the new hashtable just as we did
with the toplevel hashtable, the only diffrence is which
bits in the hashvalue we use.

End

Code 1n development can be found at:

http://people.nettilter.org/gandalt/graht/

