- redhat

Pushing the Limits of
Kernel Networking

Networking Services Team, Red Hat
Alexander Duyck
August 19", 2015



Agenda

ldentifying the Limits
Memory Locality Effect
Death by Interrupts
Flow Control and Buffer Bloat
DMA Delay
Performance

Synchornization Slow Down

The Cost of MMIO

Memory Alignment, Memcpy, and Memset

How the FIB Can Hurt Performance
What more can be done?

Pushing the Limits of Kernel Networking




Identifying the Limits

With 60B frames achieving line rate is difficult

Only 24B of additional overhead per frame
10Gb/s / 125MB/Gb / 84Bpp = 14.88Mpps, 67.2nspp

L3 cache latency on lvy Bridge is about 30 cycles

Each nanosecond an E5-2690 will process 2.6 cycles
30 cycles / 2.6 cycles/ns = 12ns

To achieve line rate at 10G we need to do two things

Lower processing time
Improve scalabllity

Pushing the Limits of Kernel Networking



Memory Locality Effect

* NUMA — Non-uniform memory access

Xeon E5-2600 QP! 1 Xeon E5-2600

CORE 1 CORE 2 CORE CORE 2

QPI 2

CORE3 CORE 4 CORE3 CORE 4

AI

CORES CORE & CORES COREG

Up to

CORE 7 CORE B
8.0 6T/s

LORE 7 LOREE

40
lanes
PCle*
3.0

Pushing the Limits of Kernel Networking




 DDIO - Data Direct I/O

* Xeon E5 26XX Feature ' gz
 Local socket only
* No need for memory ;%%

aCCessS

Memory Locality Effect

Without Intel® DDIO With Intel® DDIO

IA Core I 1A Core g
ore

TX Packet

TX Packet

» XPS — Transmit Packet Steering

» Transmit packets on local CPU

echo
echo
echo
echo

01
02
04
08

>
>
>
>

/sys/class/net/enp5s0£0/queues/tx-0/xps_cpus
/sys/class/net/enp5s0£0/queues/tx-1/xps_cpus
/sys/class/net/enp5s0£0/queues/tx-2/xps_cpus
/sys/class/net/enp5s0£0/queues/tx-3/xps_cpus

Pushing the Limits of Kernel Networking




Death by Interrupts

Interrupts can change location based on irgbalance

Too low of an interrupt rate

Overrun ring buffers on device

Add

unnecessary latency

Overrun socket memory if NAPI shares CPU
Too high of an interrupt rate

Freo
Freo

uent context switches
uent wake-ups

Interrupt moderation schemes often tuned for

benchmarks instead of real workloads

Pushing the Limits of Kernel Networking




Flow Control and Buffer Bloat

Flow control can siginficantly harm performance

Adds additional buffering, adding extra latency
Creates head-of-line blocking which limits throughput

Faster queues drop packets waiting on slowest CPU
Some NICs implement per-queue drop when disabled

Disabling it requires just one line in ethtool

ethtool -A enp5s0f0 tx off rx off autoneg off

Pushing the Limits of Kernel Networking




DMA Delay

IOMMU can add security but at significant overhead
Resource allocation/free requires lock
Hardware access required to add/remove resources
If you don't need it you can turn it off

intel_iommu=off

If you need it for virualization (KVM/XEN)

iommu=pt
Some drivers include mitigation strategies
Page reuse

Pushing the Limits of Kernel Networking




Performance Data Ahead!!!

Single socket Xeon E5-2690
Dual port 82599ES

Assigned addresses 192.168.100.64 & 192.168.101.64
Disabled flow control

Pinned IRQs 1:1
Used ntuple filter to force flows to specific queues
CPU C states disabled via cpu /dev/cpu_dma_latency

Traffic generator sent |IP data w/ RR source address

Each frame sent 4 times before moving to next address
Your Experience May Vary

Pushing the Limits of Kernel Networking ‘




10

Packets Per Second

14,000,000

12,000,000

10,000,000

8,000,000

6,000,000

4,000,000

2,000,000

Routing Performance

= —i +H—H

4 5 6 7 8 9 10 11 12

Threads

Pushing the Limits of Kernel Networking

== RHEL 7.1




Synchronization Slow Down

Synchronization primitives come at a heavy cost
local_irq_save/resore costs 10s of ns

Not needed when all requests are in same context
rmb/wmb flush pipelines which adds delay

Needed for some architectures but not others
Updated kernel to remove unecessary bits in 3.19

NAPI allocator for page fragments and skb
dma_rmb/wmb for DMA memory ordering

11 Pushing the Limits of Kernel Networking




12

The Cost of MMIO

MMIO write to notify device can cost hundreds of ns

Latency shows up as either Qdisc lock, or Tx queue
unlock overhead

xmit_more was added to 3.18 kernel to address this

Reduces MMIO writes to device

Reduces locking overhead per packet

Reduces interrupt rates as packets are coalesced
Allows for 10Gbps line rate 60B packets w/ pktgen

Pushing the Limits of Kernel Networking




Memory Alignment, Memcpy, and Memset

Partial cache-line writes come at a cost
Most architectures now start with NET _IP_ALIGN =0
On x86 partial writes trigger a read, modify, write cycle
String ops change implementation based on CPU flags
erms and rep_good can have impact on performance
KVM doesn't copy CPU flags by default
tx-nocache-copy
Enabled use of movntg for user to kernel space copy

Enabled by default for kernels 3.0 — 3.13
Prevents use of features such as DDIO

ethtool -K enp5s0f0 tx-nocache-copy off

13 Pushing the Limits of Kernel Networking



How the FIB Can Hurt Performance

Starting w/ version 4.0 of kernel fib_trie was rewritten

FIB statistics were made per CPU and not global

Penalty for trie depth significantly reduced

Kernel 4.1 merged local and main trie for further gains
Recommendations for kernels prior to 4.0

Disable CONFIG_IP_FIB_TRIE_STATS in kernel config

Avoid assigning addresses such as 192.168.122.1
IPs in the range 192.168.122.64 — 191 can reduce depth by 1
Use class A reserved addresses to redeuce trie walk
10.x.x.X likely will contain fewer bits than 192.168.x.x

14 Pushing the Limits of Kernel Networking ‘



15

Packets Per Second

Routing Performance

14000000

12000000
10000000
8000000

—&— RHEL 7.1
6000000 ———— m T RHEL7.2

4000000

2000000

1 2 3 4 5 6 7 8 9 10 11 12

Threads

Pushing the Limits of Kernel Networking



16

What More Can be Done?

SLAB/SLUB bulk allocation

https://lwn.net/Articles/648211/

Tuning interrupt moderation to work in more cases
Pktgen with 60B packets

Explore optimizing users for memset/memcpy()
build_skb()

Find a way to better use xmit_more on small packets

Explore shortening Tx/Rx queue lengths

Pushing the Limits of Kernel Networking



https://lwn.net/Articles/648211/

17

Packetrs Per Second

Routing Performance

14000000

12000000

10000000

8000000

== RHEL 7.1
=—¢=— RHEL 7.2
Tweaked 7.2

6000000 e =
4000000

2000000

1 2 3 4 5 6 7 8 9 10 11 12

Threads

Pushing the Limits of Kernel Networking



18

Questions?

Alexander Duyck

alexander.h.duyck@redhat.com
AlexanderDuyck@gmail.com

Pushing the Limits of Kernel Networking



mailto:alexander.h.duyck@redhat.com
mailto:AlexanderDuyck@gmail.com

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18

