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Identifying the Limits

With 60B frames achieving line rate is difficult

Only 24B of additional overhead per frame
10Gb/s / 125MB/Gb / 84Bpp = 14.88Mpps, 67.2nspp

L3 cache latency on lvy Bridge is about 30 cycles

Each nanosecond an E5-2690 will process 2.6 cycles
30 cycles / 2.6 cycles/ns = 12ns

To achieve line rate at 10G we need to do two things

Lower processing time
Improve scalabllity
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Memory Locality Effect

* NUMA — Non-uniform memory access
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 DDIO - Data Direct I/O

* Xeon E5 26XX Feature ' gz
 Local socket only
* No need for memory ;%%
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» XPS — Transmit Packet Steering

» Transmit packets on local CPU
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/sys/class/net/enp5s0£0/queues/tx-0/xps_cpus
/sys/class/net/enp5s0£0/queues/tx-1/xps_cpus
/sys/class/net/enp5s0£0/queues/tx-2/xps_cpus
/sys/class/net/enp5s0£0/queues/tx-3/xps_cpus
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Death by Interrupts

Interrupts can change location based on irgbalance

Too low of an interrupt rate

Overrun ring buffers on device

Add

unnecessary latency

Overrun socket memory if NAPI shares CPU
Too high of an interrupt rate

Freo
Freo

uent context switches
uent wake-ups

Interrupt moderation schemes often tuned for

benchmarks instead of real workloads
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Flow Control and Buffer Bloat

Flow control can siginficantly harm performance

Adds additional buffering, adding extra latency
Creates head-of-line blocking which limits throughput

Faster queues drop packets waiting on slowest CPU
Some NICs implement per-queue drop when disabled

Disabling it requires just one line in ethtool

ethtool -A enp5s0f0 tx off rx off autoneg off
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DMA Delay

IOMMU can add security but at significant overhead
Resource allocation/free requires lock
Hardware access required to add/remove resources
If you don't need it you can turn it off

intel_iommu=off

If you need it for virualization (KVM/XEN)

iommu=pt
Some drivers include mitigation strategies
Page reuse
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Performance Data Ahead!!!

Single socket Xeon E5-2690
Dual port 82599ES

Assigned addresses 192.168.100.64 & 192.168.101.64
Disabled flow control

Pinned IRQs 1:1
Used ntuple filter to force flows to specific queues
CPU C states disabled via cpu /dev/cpu_dma_latency

Traffic generator sent |IP data w/ RR source address

Each frame sent 4 times before moving to next address
Your Experience May Vary
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Packets Per Second
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Synchronization Slow Down

Synchronization primitives come at a heavy cost
local_irq_save/resore costs 10s of ns

Not needed when all requests are in same context
rmb/wmb flush pipelines which adds delay

Needed for some architectures but not others
Updated kernel to remove unecessary bits in 3.19

NAPI allocator for page fragments and skb
dma_rmb/wmb for DMA memory ordering
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The Cost of MMIO

MMIO write to notify device can cost hundreds of ns

Latency shows up as either Qdisc lock, or Tx queue
unlock overhead

xmit_more was added to 3.18 kernel to address this

Reduces MMIO writes to device

Reduces locking overhead per packet

Reduces interrupt rates as packets are coalesced
Allows for 10Gbps line rate 60B packets w/ pktgen
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Memory Alignment, Memcpy, and Memset

Partial cache-line writes come at a cost
Most architectures now start with NET _IP_ALIGN =0
On x86 partial writes trigger a read, modify, write cycle
String ops change implementation based on CPU flags
erms and rep_good can have impact on performance
KVM doesn't copy CPU flags by default
tx-nocache-copy
Enabled use of movntg for user to kernel space copy

Enabled by default for kernels 3.0 — 3.13
Prevents use of features such as DDIO

ethtool -K enp5s0f0 tx-nocache-copy off
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How the FIB Can Hurt Performance

Starting w/ version 4.0 of kernel fib_trie was rewritten

FIB statistics were made per CPU and not global

Penalty for trie depth significantly reduced

Kernel 4.1 merged local and main trie for further gains
Recommendations for kernels prior to 4.0

Disable CONFIG_IP_FIB_TRIE_STATS in kernel config

Avoid assigning addresses such as 192.168.122.1
IPs in the range 192.168.122.64 — 191 can reduce depth by 1
Use class A reserved addresses to redeuce trie walk
10.x.x.X likely will contain fewer bits than 192.168.x.x
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Packets Per Second

Routing Performance

14000000

12000000
10000000
8000000

—&— RHEL 7.1
6000000 ———— m T RHEL7.2

4000000

2000000

1 2 3 4 5 6 7 8 9 10 11 12

Threads

Pushing the Limits of Kernel Networking



16

What More Can be Done?

SLAB/SLUB bulk allocation

https://lwn.net/Articles/648211/

Tuning interrupt moderation to work in more cases
Pktgen with 60B packets

Explore optimizing users for memset/memcpy()
build_skb()

Find a way to better use xmit_more on small packets

Explore shortening Tx/Rx queue lengths
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Questions?

Alexander Duyck

alexander.h.duyck@redhat.com
AlexanderDuyck@gmail.com
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