- redhat

MM-summit 2016

Generic page-pool recycle facility?

Jesper Dangaard Brouer

Principal Engineer, Red Hat
MM-summit 2016: April 18"-19"



Intro slide: Motivation for page recycling

Bottlenecks: in both page allocator and DMA APIs
Many driver specific workarounds

and unfortunate side-effect of workarounds
Motivation(1): primarily performance motivated

Building “packet-page”/XDP level forward/drop facility
Motivation(2): drivers are reinventing

Cleanup open-coded driver approaches?!
Motivation(3): other use-cases

Like supporting zero-copy RX

MM-summit 2016: Generic page-pool recycle cache



Optimization principle behind page-pool idea

Untapped optimization potential
Recycling pages,
Instead of always returning to page allocator

Opens up for a number of optimizations, In area

shifting computation and setup time,
to when enter/leaving pool

MM-summit 2016: Generic page-pool recycle cache



DMA bottleneck: mostly on PowerPC

On arch's like PowerPC: DMA API is the bottleneck
Driver work-around: amortize dma call cost

alloc large order (compound) pages.

dma_map compound page, handout page-fragments for RX ring, and later
dma_unmap when last RX page-fragments is seen.

Bad side-effect. DMA page considered 'read-only’

Because dma_unmap call can be destructive
NOP instruction on x86

Read-only side-effect: Cause netstack overhead:

alloc new writable memory, copy-over IP-headers, and adjust
offset pointer into RX-page

MM-summit 2016: Generic page-pool recycle cache ‘



Idea to solve DMA mapping COSt (credit Alexei)

Keep these pages DMA mapped to device
page-pool is recycling pages
back to the originating device

Avoid the need to call dma_unmap
Only call dma_map() when setting up pages
And DMA unmap when leaving pool

This should solve both issues

Removed cost of DMA map/unmap
Can consider DMA pages writable

(dma_sync determine when)

MM-summit 2016: Generic page-pool recycle cache



DMA trick: “Spelling it out”

For DMA “keep-mapped-trick” to work
Pages must be return to originating device

To make “static’” DMA map valid
Without storing info in struct-page

Troublesome to track originating device
Needed at TX DMA completion time of another device
(also track DMA unmap addr for PowerPC)

Any meta-data to track originating device
Cannot be free'ed until after TX DMA
Could use page - private

MM-summit 2016: Generic page-pool recycle cache




Page allocator too slow

On x86, DMA is NOT the bottleneck

Besides the side-effect of read-only pages
XDP (eXpress Data Path) performance target

14.8 Mpps, approx 201 cycles at 3GHz
Single page order-0: cost 277 cycles

alloc_pages() + free pages()
(Mel's patchset reduced this to: 231 cycles)

MM-summit 2016: Generic page-pool recycle cache




Work around for slow page allocator

Drivers use: same trick as DMA workaround
Alloc larger order page: And handout fragments
E.g. Page order-3 (32K): cost 503 cycles (vel 397 cycles)
Handout 4K blocks, cost per block: 62 cycles
Problematic due do memory pin down “attacks”

Google disable this driver feature
See this as a bulking trick

Instead implement a page bulk API1?

MM-summit 2016: Generic page-pool recycle cache




BenChmark: Page al |Ocat0l‘ (optimal case, 1 CPU, no congestion)
Cycles cost increase with page order size

But partitioning page into 4K fragments amortize cost

1000
900
800
700
600
=== CPU cycles per page
500 =de== Ccycles per 4K
max forward budget
400 Mel Gorman patchset
300

100 ‘\

0
Order=0 (4K) Order=1 (8K) Order=2 (16K) Order=3 (32K) Order=4 (64K) Order=5 (128K)

= =—A

MM-summit 2016: Generic page-pool recycle cache



https://github.com/netoptimizer/prototype-kernel/blob/master/kernel/mm/bench/page_bench01.c

Issues with: Higher order pages

Hidden bulking trick
Alloc larger order page, handout fragments
Troublesome

1. fast sometimes and other times require
reclaim/compaction which can stall for prolonged
periods of time.

2. clever attacker can pin-down memory
Especially relevant for end-host TCP/IP use-case
3. does not scale as well, concurrent workloads

10 MM-summit 2016: Generic page-pool recycle cache




Concurrent CPUs scaling micro-benchmark
Order=0 pages scale well

Order=3 pages scale badly, even counting per 4K

Already lose advantage with 2 concurrent CPUs

1400
1200
1000

800 === Order=3, Cycles per 4K

== Order=0, Cycles (4K)
max forward budget

600 Order=0, Mel Gorman

400

— e
200

0
CPUs=1 2 3 4 5 6 7 8

11 MM-summit 2016: Generic page-pool recycle cache


https://github.com/netoptimizer/prototype-kernel/blob/master/kernel/mm/bench/page_bench03.c

Page-pool cooperating

Avoid keeping too many pages

Steady state, RX=TX rate, no queue

Only requires RX ring size + TX DMA outstanding
Thus, restrict pool size can be small

Overload/Burst state, RX > TX rate, cause gueue

“Good queue” behavior absorb bursts
“Bad queue” (long standing queue) potential for OOM

Today: handled at different levels, socket queue limit
Potential for detecting “bad queue” at this level

Allow page allocator to reclaim pool pages

12 MM-summit 2016: Generic page-pool recycle cache




Big question: How integrated with MM-layer

Big “all-in” approach:
Become allocator like slub: use struct page
Minimum: page pointer back to page_pool
And DMA unmap address
Build as shell around page allocator

How to keep track of “outstanding” pages?
+ track DMA unmap addr per page
APl users keep track of which pool to return to

At TX completion time, return info needed
Thus, meta-data is kept around too long (cache-cold)
Might be a trick to avoid this, by sync on page refcnt

13 MM-summit 2016: Generic page-pool recycle cache




Novel recycle trick by Intel drivers

Issue getting page recycled back into pool
Without meta-data keeping track of return-pool
Use page ref count

To see If TX Is done, when RX look at page

Split pages in two halfs

Keep pages in RX ring (tracking structure)
On RX, if page refcnt is low (<=2),

then reuse other half to refill RX ring (else normal alloc)
In-effect recycle the page

When one-time round ring is less than TX complet time
Still, adds 2x atomic ops per packet

14 MM-summit 2016: Generic page-pool recycle cache




Other use-cases: RX zero-copy

Currently: NIC RX zero-copy not allowed

Could leak kernel memory information in page
Know: Pages are recycled back into pool

Clear memory on new page entering pool

RX zero-copy safe, but could “leak” packet-data
Early demux: HW filters can direct to specific RX-q

Create page-pool per RX-queue
ldea: alloc pages from virtual addr space (premapped)

Need fairly closer integration with MM-layer

(not compatible with Intel driver trick)

15 MM-summit 2016: Generic page-pool recycle cache




Other use-cases: Using huge pages for RX

Make page-pool API hide page-boundaries
Driver unaware of page order used
ldea: huge page RX zero-copy

Page-pool handout page-frags for RX ring
Huge-page gets memory mapped into userspace

Done to reduce TLB misses for userspace
Zero-copy to userspace
Netmap or DPDK could run on top

Use NIC HW filter,

create RX queue with this pool strategy
Hardlimit on number huge pages

16 MM-summit 2016: Generic page-pool recycle cache




Concluding discussion!?

Already active discussions on mailing list...

Must fix DMA problem causing read-only pages

Maybe just have “

ugly” solution for x867

Leaning towards, something on top of page allocator

Only focus on performance use-case

Down prioritize RX zero-copy use-case?

Use field in struct
Want a page bulk a

page, for pool return path
loc API... please!

For faster refill of
Large order page

nage-pool
trick is problematic (as described)

17 MM-summit 2016: Generic page-pool recycle cache




	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17

