
MM-summit 2016: Generic page-pool recycle cache1

MM-summit 2016

Generic page-pool recycle facility?

Jesper Dangaard Brouer
Principal Engineer, Red Hat

MM-summit 2016: April 18th-19th



MM-summit 2016: Generic page-pool recycle cache2

Intro slide: Motivation for page recycling

● Bottlenecks: in both page allocator and DMA APIs
● Many driver specific workarounds

● and unfortunate side-effect of workarounds

● Motivation(1): primarily performance motivated
● Building “packet-page”/XDP level forward/drop facility

● Motivation(2): drivers are reinventing
● Cleanup open-coded driver approaches?!

● Motivation(3): other use-cases
● Like supporting zero-copy RX



MM-summit 2016: Generic page-pool recycle cache3

Optimization principle behind page-pool idea

● Untapped optimization potential
● Recycling pages,

● instead of always returning to page allocator

● Opens up for a number of optimizations, in area
● shifting computation and setup time,
● to when enter/leaving pool



MM-summit 2016: Generic page-pool recycle cache4

DMA bottleneck: mostly on PowerPC

● On arch's like PowerPC: DMA API is the bottleneck

● Driver work-around: amortize dma call cost
● alloc large order (compound) pages.

● dma_map compound page, handout page-fragments for RX ring, and later 
dma_unmap when last RX page-fragments is seen.

● Bad side-effect: DMA page considered 'read-only'
● Because dma_unmap call can be destructive

● NOP instruction on x86
● Read-only side-effect: Cause netstack overhead:

● alloc new writable memory, copy-over IP-headers, and adjust 
offset pointer into RX-page



MM-summit 2016: Generic page-pool recycle cache5

Idea to solve DMA mapping cost (credit Alexei)

● Keep these pages DMA mapped to device
● page-pool is recycling pages
● back to the originating device

● Avoid the need to call dma_unmap
● Only call dma_map() when setting up pages
● And DMA unmap when leaving pool

● This should solve both issues
● Removed cost of DMA map/unmap
● Can consider DMA pages writable

● (dma_sync determine when)



MM-summit 2016: Generic page-pool recycle cache6

DMA trick: “Spelling it out”

● For DMA “keep-mapped-trick” to work
● Pages must be return to originating device

● To make “static” DMA map valid

● Without storing info in struct-page
● Troublesome to track originating device

● Needed at TX DMA completion time of another device

● (also track DMA unmap addr for PowerPC)
● Any meta-data to track originating device

● Cannot be free'ed until after TX DMA
● Could use page→private



MM-summit 2016: Generic page-pool recycle cache7

Page allocator too slow

● On x86, DMA is NOT the bottleneck
● Besides the side-effect of read-only pages

● XDP (eXpress Data Path) performance target
● 14.8 Mpps, approx 201 cycles at 3GHz

● Single page order-0: cost 277 cycles
● alloc_pages() + __free_pages()

● (Mel's patchset reduced this to: 231 cycles)



MM-summit 2016: Generic page-pool recycle cache8

Work around for slow page allocator

● Drivers use: same trick as DMA workaround
● Alloc larger order page: And handout fragments

● E.g. Page order-3 (32K): cost 503 cycles (Mel 397 cycles)

● Handout 4K blocks, cost per block: 62 cycles
● Problematic due do memory pin down “attacks”

● Google disable this driver feature
● See this as a bulking trick

● Instead implement a page bulk API?



MM-summit 2016: Generic page-pool recycle cache9

Benchmark: Page allocator (optimal case, 1 CPU, no congestion)

Order=0 (4K) Order=1 (8K) Order=2 (16K) Order=3 (32K) Order=4 (64K) Order=5 (128K)
0

100

200

300

400

500

600

700

800

900

1000

CPU cycles per page

cycles per 4K

max forward budget

Mel Gorman patchset

● Cycles cost increase with page order size

● But partitioning page into 4K fragments amortize cost

https://github.com/netoptimizer/prototype-kernel/blob/master/kernel/mm/bench/page_bench01.c


MM-summit 2016: Generic page-pool recycle cache10

Issues with: Higher order pages

● Hidden bulking trick
● Alloc larger order page, handout fragments

● Troublesome
● 1. fast sometimes and other times require 

reclaim/compaction which can stall for prolonged 
periods of time.

● 2. clever attacker can pin-down memory
● Especially relevant for end-host TCP/IP use-case

● 3. does not scale as well, concurrent workloads



MM-summit 2016: Generic page-pool recycle cache11

Concurrent CPUs scaling micro-benchmark

CPUs=1 2 3 4 5 6 7 8
0

200

400

600

800

1000

1200

1400

Order=3, Cycles per 4K

Order=0, Cycles (4K)

max forward budget

Order=0, Mel Gorman

● Order=0 pages scale well

● Order=3 pages scale badly, even counting per 4K

● Already lose advantage with 2 concurrent CPUs

https://github.com/netoptimizer/prototype-kernel/blob/master/kernel/mm/bench/page_bench03.c


MM-summit 2016: Generic page-pool recycle cache12

Page-pool cooperating

● Avoid keeping too many pages

● Steady state, RX=TX rate, no queue
● Only requires RX ring size + TX DMA outstanding
● Thus, restrict pool size can be small

● Overload/Burst state, RX > TX rate, cause queue
● “Good queue” behavior absorb bursts
● “Bad queue” (long standing queue) potential for OOM

● Today: handled at different levels, socket queue limit
● Potential for detecting “bad queue” at this level

● Allow page allocator to reclaim pool pages



MM-summit 2016: Generic page-pool recycle cache13

Big question: How integrated with MM-layer

● Big “all-in” approach:
● Become allocator like slub: use struct page
● Minimum: page pointer back to page_pool

● And DMA unmap address

● Build as shell around page allocator
● How to keep track of “outstanding” pages?

● + track DMA unmap addr per page

● API users keep track of which pool to return to
● At TX completion time, return info needed

● Thus, meta-data is kept around too long (cache-cold)
● Might be a trick to avoid this, by sync on page refcnt



MM-summit 2016: Generic page-pool recycle cache14

Novel recycle trick by Intel drivers

● Issue getting page recycled back into pool
● Without meta-data keeping track of return-pool

● Use page ref count
● To see if TX is done, when RX look at page
● Split pages in two halfs

● Keep pages in RX ring (tracking structure)
● On RX, if page refcnt is low (<=2),

● then reuse other half to refill RX ring (else normal alloc)
● In-effect recycle the page

● When one-time round ring is less than TX complet time
● Still, adds 2x atomic ops per packet



MM-summit 2016: Generic page-pool recycle cache15

Other use-cases: RX zero-copy

● Currently: NIC RX zero-copy not allowed
● Could leak kernel memory information in page

● Know: Pages are recycled back into pool
● Clear memory on new page entering pool
● RX zero-copy safe, but could “leak” packet-data

● Early demux: HW filters can direct to specific RX-q
● Create page-pool per RX-queue
● Idea: alloc pages from virtual addr space (premapped)

● Need fairly closer integration with MM-layer
● (not compatible with Intel driver trick)



MM-summit 2016: Generic page-pool recycle cache16

Other use-cases: Using huge pages for RX

● Make page-pool API hide page-boundaries
● Driver unaware of page order used

● Idea: huge page RX zero-copy
● Page-pool handout page-frags for RX ring
● Huge-page gets memory mapped into userspace

● Done to reduce TLB misses for userspace

● Zero-copy to userspace
● Netmap or DPDK could run on top

● Use NIC HW filter,
● create RX queue with this pool strategy 

● Hardlimit on number huge pages



MM-summit 2016: Generic page-pool recycle cache17

Concluding discussion!?

● Already active discussions on mailing list…

● Must fix DMA problem causing read-only pages
● Maybe just have “ugly” solution for x86?

● Leaning towards, something on top of page allocator
● Only focus on performance use-case
● Down prioritize RX zero-copy use-case?
● Use field in struct page, for pool return path

● Want a page bulk alloc API… please!
● For faster refill of page-pool
● Large order page trick is problematic (as described)


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17

