- redhat

Memory vs. Networking

Provoking and fixing memory bottlenecks

Focused on the page allocator

Jesper Dangaard Brouer
Principal Engineer, Red Hat

LSF/MM-summit
March, 2017

Overview

Mind-bugling speeds

New technology: XDP (eXpress Data Path)
Limited by page allocator speed

Page recycling
Every driver reinvent page recycling
Generalizing page recycling

Micro benchmarking page allocator

Huge improvements by Mel Gorman
Strange overhead by NUMA

2/16 Memory vs. Networking — Provoking and fixing memory bottlenecks

Mind-bugling speeds

10Gbit/s wirespeed smallest packet size

14.88 Mpps (Million packets per second)
67.2ns between packets, at 3GHz -> 201 cycles
100G with 1514 bytes pkt size — 8.1Mpps (123ns)

Trick: Bulking/batching: amortize per packet cost

Easy to think: bulk 10, 10x cycle budget 2010 cycles.

Not as easy: bulking APIs does not give linear scaling
E.g. SLUB bulking APIs gave 60% speedup.

Kernel bypass solutions show it is possible!

Via bulking and own memory allocators

3/16 Memory vs. Networking — Provoking and fixing memory bottlenecks

XDP - eXpress Data Path

NetDev-guys XDP technology (approx kernel v4.9)

Shows these speeds are possible, as long as:

1. we avoid talking to MM-layer
2. page kept DMA mapped
3. stay on same CPU

Single CPU performance (mix5 50Gbit/s)

XDP_DROP: 17Mpps
XDP_TX: 10Mpps (TX out same interface)

Use-cases:
DDoS and Load-Balancer (Facebook)

4/16 Memory vs. Networking — Provoking and fixing memory bottlenecks

XDP “real” forwarding missing

XDP packet forward between devices

Not implemented yet,
due to performance concerns and missing RX bulking
Cannot avoid interacting with MM-layer

Local device driver specific recycle trick not sufficient
Imagined forwarding to another device
No-SKB, “raw” page is transferred, offset+length

Sits on remote device TX queue
Until DMA TX completion: Now page need free’ed or “returned”

5/16 Memory vs. Networking — Provoking and fixing memory bottlenecks ‘

Driver page recycling

All high-speed NIC drivers do page recycling

Two reasons:

1. page allocator is too slow
2. Avoiding DMA mapping cost

Different variations per driver

Want to generalize this

Every driver developer is reinventing a page recycle mechanism

6/16 Memory vs. Networking — Provoking and fixing memory bottlenecks

Need “handle” to page after leaving the driver

Some drivers do opportunistic recycling today

Bump page refcnt, and keep pages in a queue

(Intel drivers use RX ring itself for this queue)
On alloc, check if queue-head page have refcnt ==

If so, reuse this

Else, remove from queue and call put_page()

Thus, last caller of put_page() will free it for real
Issue: call DMA-unmap on pkts in-flight

This looks good in benchmarks, but will it work for:

Real use-cases: many sockets that need some queue
TCP sockets: keep packets for retransmit until ACKed

7/16 Memory vs. Networking — Provoking and fixing memory bottlenecks

Generalize problem statement

Drivers receive DMA mapped pages

Want to keep page DMA mapped (for perf reasons)
Thinks page allocator too slow

What can MM layer do address this use-case?
Faster PCP (Per CPU Page) cache

But can this ever compete with driver local recycling

XDP_DROP return page into array (no-locks)
(protected by NAPI/softirg running)

Could MM provide API for

per device page allocator (limited size) cache
that keeps pages DMA mapped for this device

8/16 Memory vs. Networking — Provoking and fixing memory bottlenecks

Even more generic

What I'm basically asking for: destructor callback

Upon page reach refcnt ==
(+separate call to allow refcnt==1 when safe)
Call a device specific destructor callback

This call is allowed to steal the page
callback gets page + data (in this case DMA address)

Road blocks
Need page-flag

Room to store

Data (DMA-addr) + Callback (can be table lookup id)
(looking at page->compound_dtor infrastructure)

9/16 Memory vs. Networking — Provoking and fixing memory bottlenecks

Microbenchmarking time

Quote Sir Kelvin:
"If you cannot measure it, you cannot improve Iit"
What is the performance of the page allocator?

How far are we from Jesper’s target?

Do be aware: This is "zoom-in" microbenchmarking,
designed to isolate and measure a specific code path,
magnifying bottlenecks.

Don’t get scared: Provoked lock congestion’s should not
occur for real workloads

10/16 Memory vs. Networking — Provoking and fixing memory bottlenecks

History: Benchmark page order-0 fast-path

Micro-benchmark order-0 fast-path 300
Test PCP (Per CPU Pages) lists
Simply recycle same page 250
Only show optimal perf achievable
Graph show perf improvement history 200
All credit goes to Mel Gorman
Approx 48% improvement!!! :-) 150 m Cycles
276 — 143 cycles
100
50
0
10G budget V4.6 . v4.11-rcl

11/16 Memory vs. Networking — Provoking and fixing memory bottlenecks ‘

Cost when page order increase (Kernel 4.11-rcl)

Redline no surprises here

1200

Expected: —4— Cycles

Cycles per 4K

Cost goes up with order
1000

Expected:

Good curve until order-3

Yellow line

800

Amortize cost per 4K 600
Trick used by some drivers

Want to avoid this trick: 400

Attacker pin down memory
Bad for concurrent workload 200

Reclaim/compaction stalls

0
Order-0 Order-1 Order-2 Order-3 Order-4 Order-5 Order-6

12/16 Memory vs. Networking — Provoking and fixing memory bottlenecks ‘

Pressure PCP lists with many out-standing pages

300

Test alloc N order-0 pages e ycles
before freeing them

250

Expected results:

Clearly shows size of PCP 200
cache is 128

Fairly good at amotize cost 15
(Does 32 bulking internally)

100
50

0

2 8 32 128 512 2048 8192
Outstanding pages=14 16 64 256 1024 4096

13/16 Memory vs. Networking — Provoking and fixing memory bottlenecks ‘

Moving pages cross CPU

Networking often RX on CPU-A but
process and free CPU-B

250

B Cycles CPU-A
B Cycles CPU-B

Bench isolate page moving cross CPU - Single CPU

Baseline: ptr_ring (31 cycles per CPU)

Best possible perf with cross CPU queue 150

PCP cross CPU(order-0) alloc_pages+put_page

100
Cost on both CPUs increased to 210 cycles

Cross CPU issue? Or

outstanding pages issue? (210-31)*2=358 too high >0

Hot lock: zone - lock (even-though PCP have 32 bulking) .
Single CPU cost 145 cycles (no outstanding) 0
< &
Delay 1 page + prefetchw before put_page() & &
S N
CPU-B cost 152 reduced with 58 cycles &

Helps CPU cache coherency protocol

14/16 Memory vs. Networking — Provoking and fixing memory bottlenecks

Disable zone_statistics (via No-NUMA)

* Micro-benchmark order-0 fast-path
160

« Test PCP (Per CPU Pages) lists
« Simply recycle same page 140
« Only show optimal perf achievable
- Disable CONFIG_NUMA and zone_statistics

120

* (Kernel 4.11-rcl) 100
« 143 cycles normal with NUMA

« 97 cycles disabled NUMA

- Extra 46 cycles cost (32%) 60

80

* Looks like most originate from call 4o

* zone_statistics()

20

Normal with NUMA Disable NUMA

15/16 Memory vs. Networking — Provoking and fixing memory bottlenecks Q

End slide

Use-case: XDP redirect out another device

Need super fast return/free of pages
Can this be integrated into page allocator

Or keep doing driver opportunistic recycle hacks?

16/16 Memory vs. Networking — Provoking and fixing memory bottlenecks

EXTRA SLIDES

17/16 Memory vs. Networking — Provoking and fixing memory bottlenecks

Compare vs. No-NUMA out-standing pages test

300

Test alloc N order-0 pages
before freeing them

== Cycles NUMA

250 Cycles NoNUMA
Expected results: ok
With or without NUMA -

Still follow curve 150

Offset is almost constant
100

SOM

N=1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192

18/16 Memory vs. Networking — Provoking and fixing memory bottlenecks

Page allocator bulk APl benchmarks

Took over some bulk patches from Mel
Rebasing patches to latest kernel

Ran into issue... no results to present :-(
Fails in zone_watermark_fast check
Did write page bench04 bulk

19/16 Memory vs. Networking — Provoking and fixing memory bottlenecks

https://github.com/netoptimizer/prototype-kernel/blob/master/kernel/mm/bench/page_bench04_bulk.c

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19

