
Memory vs. Networking – Provoking and fixing memory bottlenecks1/16

Memory vs. Networking
Provoking and fixing memory bottlenecks

Focused on the page allocator

Jesper Dangaard Brouer
Principal Engineer, Red Hat

LSF/MM-summit
March, 2017

Memory vs. Networking – Provoking and fixing memory bottlenecks2/16

Overview

● Mind-bugling speeds

● New technology: XDP (eXpress Data Path)
● Limited by page allocator speed

● Page recycling
● Every driver reinvent page recycling
● Generalizing page recycling

● Micro benchmarking page allocator
● Huge improvements by Mel Gorman
● Strange overhead by NUMA

Memory vs. Networking – Provoking and fixing memory bottlenecks3/16

Mind-bugling speeds

● 10Gbit/s wirespeed smallest packet size
● 14.88 Mpps (Million packets per second)
● 67.2ns between packets, at 3GHz -> 201 cycles
● 100G with 1514 bytes pkt size → 8.1Mpps (123ns)

● Trick: Bulking/batching: amortize per packet cost
● Easy to think: bulk 10, 10x cycle budget 2010 cycles.

● Not as easy: bulking APIs does not give linear scaling
● E.g. SLUB bulking APIs gave 60% speedup.

● Kernel bypass solutions show it is possible!
● Via bulking and own memory allocators

Memory vs. Networking – Provoking and fixing memory bottlenecks4/16

XDP - eXpress Data Path

● NetDev-guys XDP technology (approx kernel v4.9)

● Shows these speeds are possible, as long as:
● 1. we avoid talking to MM-layer
● 2. page kept DMA mapped
● 3. stay on same CPU

● Single CPU performance (mlx5 50Gbit/s)
● XDP_DROP: 17Mpps
● XDP_TX: 10Mpps (TX out same interface)

● Use-cases:
● DDoS and Load-Balancer (Facebook)

Memory vs. Networking – Provoking and fixing memory bottlenecks5/16

XDP “real” forwarding missing

● XDP packet forward between devices
● Not implemented yet,

● due to performance concerns and missing RX bulking

● Cannot avoid interacting with MM-layer
● Local device driver specific recycle trick not sufficient

● Imagined forwarding to another device
● No-SKB, “raw” page is transferred, offset+length
● Sits on remote device TX queue

● Until DMA TX completion: Now page need free’ed or “returned”

Memory vs. Networking – Provoking and fixing memory bottlenecks6/16

Driver page recycling

● All high-speed NIC drivers do page recycling
● Two reasons:

● 1. page allocator is too slow
● 2. Avoiding DMA mapping cost

● Different variations per driver
● Want to generalize this

● Every driver developer is reinventing a page recycle mechanism

Memory vs. Networking – Provoking and fixing memory bottlenecks7/16

Need “handle” to page after leaving the driver

● Some drivers do opportunistic recycling today
● Bump page refcnt, and keep pages in a queue

● (Intel drivers use RX ring itself for this queue)

● On alloc, check if queue-head page have refcnt ==1
● If so, reuse this
● Else, remove from queue and call put_page()

● Thus, last caller of put_page() will free it for real
● Issue: call DMA-unmap on pkts in-flight

● This looks good in benchmarks, but will it work for:
● Real use-cases: many sockets that need some queue
● TCP sockets: keep packets for retransmit until ACKed

Memory vs. Networking – Provoking and fixing memory bottlenecks8/16

Generalize problem statement

● Drivers receive DMA mapped pages
● Want to keep page DMA mapped (for perf reasons)
● Thinks page allocator too slow

● What can MM layer do address this use-case?
● Faster PCP (Per CPU Page) cache
● But can this ever compete with driver local recycling
● XDP_DROP return page into array (no-locks)

● (protected by NAPI/softirq running)

● Could MM provide API for
● per device page allocator (limited size) cache

● that keeps pages DMA mapped for this device

Memory vs. Networking – Provoking and fixing memory bottlenecks9/16

Even more generic

● What I'm basically asking for: destructor callback
● Upon page reach refcnt == 0

● (+separate call to allow refcnt==1 when safe)

● Call a device specific destructor callback
● This call is allowed to steal the page
● callback gets page + data (in this case DMA address)

● Road blocks
● Need page-flag
● Room to store

● Data (DMA-addr) + Callback (can be table lookup id)
● (looking at page->compound_dtor infrastructure)

Memory vs. Networking – Provoking and fixing memory bottlenecks10/16

Microbenchmarking time

● Quote Sir Kelvin:
● "If you cannot measure it, you cannot improve it"

● What is the performance of the page allocator?
● How far are we from Jesper’s target?

● Do be aware: This is "zoom-in" microbenchmarking,
designed to isolate and measure a specific code path,
magnifying bottlenecks.

● Don’t get scared: Provoked lock congestion’s should not
occur for real workloads

Memory vs. Networking – Provoking and fixing memory bottlenecks11/16

History: Benchmark page order-0 fast-path

10G budget v4.6 v4.7 v4.10 v4.11-rc1
0

50

100

150

200

250

300

Cycles

● Micro-benchmark order-0 fast-path

● Test PCP (Per CPU Pages) lists

● Simply recycle same page

● Only show optimal perf achievable

● Graph show perf improvement history

● All credit goes to Mel Gorman

● Approx 48% improvement!!! :-)

● 276 → 143 cycles

Memory vs. Networking – Provoking and fixing memory bottlenecks12/16

Cost when page order increase (Kernel 4.11-rc1)

Order-0 Order-1 Order-2 Order-3 Order-4 Order-5 Order-6
0

200

400

600

800

1000

1200

Cycles

Cycles per 4K

● Redline no surprises here

● Expected:

● Cost goes up with order

● Expected:

● Good curve until order-3

● Yellow line

● Amortize cost per 4K

● Trick used by some drivers

● Want to avoid this trick:

● Attacker pin down memory

● Bad for concurrent workload

● Reclaim/compaction stalls

Memory vs. Networking – Provoking and fixing memory bottlenecks13/16

Pressure PCP lists with many out-standing pages

Outstanding pages=1
2

4
8

16
32

64
128

256
512

1024
2048

4096
8192

0

50

100

150

200

250

300

Cycles
● Test alloc N order-0 pages

before freeing them

● Expected results:
● Clearly shows size of PCP

cache is 128
● Fairly good at amotize cost

(Does 32 bulking internally)

Memory vs. Networking – Provoking and fixing memory bottlenecks14/16

Moving pages cross CPU

Sing
le-

CPU

Bas
eli

ne
:p

tr_
rin

g

PCP c
ro

ss
 C

PU

Dela
y

1p
ag

e+
pr

efe
tc

hw

0

50

100

150

200

250

Cycles CPU-A

Cycles CPU-B

Single CPU

● Networking often RX on CPU-A but
process and free CPU-B

● Bench isolate page moving cross CPU

● Baseline: ptr_ring (31 cycles per CPU)

● Best possible perf with cross CPU queue

● PCP cross CPU(order-0) alloc_pages+put_page

● Cost on both CPUs increased to 210 cycles

● Cross CPU issue? Or

● outstanding pages issue? (210-31)*2=358 too high

● Hot lock: zone→lock (even-though PCP have 32 bulking)

● Single CPU cost 145 cycles (no outstanding)

● Delay 1 page + prefetchw before put_page()

● CPU-B cost 152 reduced with 58 cycles

● Helps CPU cache coherency protocol

Memory vs. Networking – Provoking and fixing memory bottlenecks15/16

Disable zone_statistics (via No-NUMA)

Normal with NUMA Disable NUMA
0

20

40

60

80

100

120

140

160

● Micro-benchmark order-0 fast-path

● Test PCP (Per CPU Pages) lists

● Simply recycle same page

● Only show optimal perf achievable

● Disable CONFIG_NUMA and zone_statistics

● (Kernel 4.11-rc1)

● 143 cycles normal with NUMA

● 97 cycles disabled NUMA

● Extra 46 cycles cost (32%)

● Looks like most originate from call

● zone_statistics()

Memory vs. Networking – Provoking and fixing memory bottlenecks16/16

End slide

● Use-case: XDP redirect out another device
● Need super fast return/free of pages
● Can this be integrated into page allocator

● Or keep doing driver opportunistic recycle hacks?

Memory vs. Networking – Provoking and fixing memory bottlenecks17/16

EXTRA SLIDES

Memory vs. Networking – Provoking and fixing memory bottlenecks18/16

Compare vs. No-NUMA out-standing pages test

N=1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192
0

50

100

150

200

250

300

Cycles NUMA

Cycles No-NUMA

Offset

● Test alloc N order-0 pages
before freeing them

● Expected results:
● With or without NUMA

● Still follow curve
● Offset is almost constant

Memory vs. Networking – Provoking and fixing memory bottlenecks19/16

Page allocator bulk API benchmarks

● Took over some bulk patches from Mel

● Rebasing patches to latest kernel
● Ran into issue… no results to present :-(

● Fails in zone_watermark_fast check

● Did write page_bench04_bulk

https://github.com/netoptimizer/prototype-kernel/blob/master/kernel/mm/bench/page_bench04_bulk.c

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19

