
Toke Høiland-Jørgensen (Red Hat)
Jesper Dangaard Brouer (Red Hat)

Netconf
Boston, June 2019

SKB creation outside drivers:
using metadata and HW-
offloads?

SKB creation outside drivers: using metadata and HW-offloads?
1

Framing XDP
XDP: in-kernel programmable (eBPF) layer before netstack

(AF_XDP is our selective kernel-bypass to userspace)
XDP ensures that Linux networking stays relevant

Operates at L2-L3, netstack is L4-L7
XDP is not first mover, but we believe XDP is different and better

Flexible sharing of NIC resources
Killer feature: Integration with Linux kernel

This talk is about extending this integration further

SKB creation outside drivers: using metadata and HW-offloads? - Jesper Dangaard Brouer < >brouer@redhat.com
2

mailto:brouer@redhat.com

Move SKB allocations out of NIC drivers
Goal: Simplify driver, via creating SKB inside network-core code

Happens today via xdp_frame in both veth and cpumap

The xdp_frame is placed in top of data-frame (data_hard_start)

Currently 32-bytes
Issue: SKB’s created this way are lacking HW-offloads like:

HW checksum info (for skb->ip_summed + skb->csum)
HW RX hash (skb_set_hash(hash, type))
(these are almost always needed… tempted to extend xdp_frame)

SKB creation outside drivers: using metadata and HW-offloads? - Jesper Dangaard Brouer < >brouer@redhat.com
3

mailto:brouer@redhat.com

Other HW-offloads
Other existing offloads, used by SKBs, but not always enabled

VLAN (__vlan_hwaccel_put_tag())
RX timestamp

HW skb_hwtstamps() (stored in skb_shared_info)
Earlier XDP software timestamp (for skb->tstamp)

RX mark (skb->mark supported by mlx5)

Other potential offloads, which hardware can do (but not used by SKB):

Unique u64 flow identifier key (mlx5 HW)
Higher-level protocol header offsets

RSS-hash can deduce e.g. IPv4/TCP (as frag not marked as TCP)
But NIC HW have full parse info avail

SKB creation outside drivers: using metadata and HW-offloads? - Jesper Dangaard Brouer < >brouer@redhat.com
4

mailto:brouer@redhat.com

The holy-grail for HW-offloads
The GOAL is to come-up with a Generic Offload Abstraction Layer…

Generic and dynamic way to transfer HW-offload info
Only enable info when needed
Both made available for SKB creation and XDP programs

The big questions are:
Where to store this information?
How to make it dynamic?

SKB creation outside drivers: using metadata and HW-offloads? - Jesper Dangaard Brouer < >brouer@redhat.com
5

mailto:brouer@redhat.com

Simple static solution
The simple solution that isn’t as dynamic as we want…

Have drivers send along extra struct with info to xdp_do_redirect()

Use info-struct when calling convert_to_xdp_frame()

Drivers have to fill-out info-struct every time
Driver basically transfer info from descriptor to info-struct
All drivers have to agree on struct layout

The XDP-prog don’t have access to info-struct
As xdp_do_redirect() happens after XDP-prog runs

(could be solved by also giving info-struct to XDP-prog)

SKB creation outside drivers: using metadata and HW-offloads? - Jesper Dangaard Brouer < >brouer@redhat.com
6

mailto:brouer@redhat.com

Use NIC frame descriptor directly? (No)
This came up before… why not give NIC frame descriptor directly to BPF?

Why can’t we use frame descriptor directly?
Very compact bit format and union overloaded

Even if possible to describe via BTF
Prog to decode too specific to vendor HW (+ revision)

HW revisions have erratas (e.g. ixgbe csum invalid in one HW rev)
A driver translation function should handle/hide this

With cpumap xdp_frame is read on remote CPU, descriptor not-valid

SKB creation outside drivers: using metadata and HW-offloads? - Jesper Dangaard Brouer < >brouer@redhat.com
7

mailto:brouer@redhat.com

Where to store the offload info?
At least info-struct should be described via BTF
Instead of separate info-struct, store info-struct in data-frame area?

Two options:
Use XDP metadata area (already avail to XDP)
Use areas “inside” xdp_frame (or dynamic area after xdp_frame ends)

not curr avail to XDP (as xdp_frame is created after XDP-prog ran)

Note: Cannot store info-struct inside xdp_rxq_info

Because not a per frame data-structure, and xdp_frame use bulk processing

SKB creation outside drivers: using metadata and HW-offloads? - Jesper Dangaard Brouer < >brouer@redhat.com
8

mailto:brouer@redhat.com

Background: What is XDP-metadata area?
Background slide, what do we have today…

XDP have 32 bytes metadata in front of payload (xdp_buff->data_meta)

XDP tail-calls can read this (transfer info between tail-calls)
TC eBPF (cls_bpf) can read this, and update SKB fields

E.g. save XDP lookup and use in TC eBPF hook
AF_XDP raw frames have this metadata avail in front of payload

SKB creation outside drivers: using metadata and HW-offloads? - Jesper Dangaard Brouer < >brouer@redhat.com
9

mailto:brouer@redhat.com

Safe to allow XDP to update offload info?
Can we allow XDP to update offload info area?

Happens before SKB field update
Are there any safety issues? (kernel netstack stability)
XDP could potentially fix HW-offload fields

Likely need some boundary checks
Especially for higher-level protocol header offsets

Can verifier tell us
if XDP prog changed metadata area?

SKB creation outside drivers: using metadata and HW-offloads? - Jesper Dangaard Brouer < >brouer@redhat.com
10

mailto:brouer@redhat.com

Lacking knowledge about BTF
When info-struct is described via BTF

Can kernel code understand BTF and act dynamically???
In convert_to_xdp_frame() code
And in xdp_frame to SKB update fields code?

Hack: if driver knows order struct-members can appear in
Walk BTF format and create bitmap with enabled members
When member is matched, increment iterator with member size
(Fear this is slow, due to data dependency on iterator)

SKB creation outside drivers: using metadata and HW-offloads? - Jesper Dangaard Brouer < >brouer@redhat.com
11

mailto:brouer@redhat.com

Driver call-back function
Driver fill-out “info-struct”, thus knows layout

xdp_frame to SKB conversion, use driver call-back to update SKB fields?
One step further

Could driver call-back be a BPF-prog, that update SKB fields?

SKB creation outside drivers: using metadata and HW-offloads? - Jesper Dangaard Brouer < >brouer@redhat.com
12

mailto:brouer@redhat.com

How to configure driver for this?
Next challenge: What is the interface for configuring this?

Extending ndo_bpf seems obvious
But there is a dependency between

info-struct, driver populate, and SKB-update call-back
If XDP-prog use BTF-metadata layout

how to handle (or lock) BTF-layout changes runtime

SKB creation outside drivers: using metadata and HW-offloads? - Jesper Dangaard Brouer < >brouer@redhat.com
13

mailto:brouer@redhat.com

Driver static approach
Steps for static driver

Step#A: Driver define static info-struct for metadata area
Create BTF-format (via macros) and register with BPF (?)
Adjust xdp_buff->data_meta with info-struct size

Step#B: Driver function populates metadata with offloads from descriptor
It knows about HW offloads curr enabled, revisions and quirks

XDP-prog is called (how does user get BTF-format?)
Step#C: Driver static SKB-update call-back

Via XDP-redirect (either cpumap or veth) call-back is invoked with SKB

SKB creation outside drivers: using metadata and HW-offloads? - Jesper Dangaard Brouer < >brouer@redhat.com
14

mailto:brouer@redhat.com

More dynamic approach
Same steps: Step#A + Step#B

Step#A: Driver defines static info-struct for metadata area
Create BTF-format (via macros) and register with BPF

Step#B: Driver function populates metadata with offloads from descriptor
Dynamic BPF call-back

Step#C: Driver SKB-update call-back is a BPF-prog
Validation trick:

This SKB-update BPF-prog, must have map named ’metadata’
map must have BTF-format that matches driver BTF-format

checked on attach via ndo_bpf, else reject

SKB creation outside drivers: using metadata and HW-offloads? - Jesper Dangaard Brouer < >brouer@redhat.com
15

mailto:brouer@redhat.com

When to enable populate metadata
The populate metadata function is not enabled by default

Driver creates real BPF-map with BTF-format for metadata (as value)
(Key is driver “id” for this map, allow for more maps per driver)

Add ndo_bpf query for metadata-map, return map-fd
Both XDP-prog and SKB-update prog can use map

Trigger to enable/disable, when map-user gets attached/detached
(1) ndo_bpf attach SKB-update BPF-prog that uses this map,
and/or when (2) ndo_bpf XDP-prog being attached (that uses map)

Both cases, check BTF-format match or reject attach
The map-refcnt, determines when to disable populate metadata again

SKB creation outside drivers: using metadata and HW-offloads? - Jesper Dangaard Brouer < >brouer@redhat.com
16

mailto:brouer@redhat.com

Selecting metadata layouts
Driver can have multiple metadata-maps

Identified via map-key as id
(the map-value define metadata layout via BTF-format)
Each map (likely) have different driver populate function associated

SKB creation outside drivers: using metadata and HW-offloads? - Jesper Dangaard Brouer < >brouer@redhat.com
17

mailto:brouer@redhat.com

End
Disclaimer

These slides are only design ideas and suggestions
Non of this is actually implemented

Main purpose was getting a discussion going
which were hopefully successful…

SKB creation outside drivers: using metadata and HW-offloads? - Jesper Dangaard Brouer < >brouer@redhat.com
18

mailto:brouer@redhat.com

Slides: Extra

SKB creation outside drivers: using metadata and HW-offloads? - Jesper Dangaard Brouer < >brouer@redhat.com
19

mailto:brouer@redhat.com

Layout of xdp_frame
If layout needs to be discussed…

struct xdp_frame {
 void * data; /* 0 8 */
 u16 len; /* 8 2 */
 u16 headroom; /* 10 2 */
 u16 metasize; /* 12 2 */
 /* XXX 2 bytes hole, try to pack */
 struct xdp_mem_info mem; /* 16 8 */
 struct net_device * dev_rx; /* 24 8 */

 /* size: 32, cachelines: 1, members: 6 */
 /* sum members: 30, holes: 1, sum holes: 2 */
 /* last cacheline: 32 bytes */
};

SKB creation outside drivers: using metadata and HW-offloads? - Jesper Dangaard Brouer < >brouer@redhat.com
20

mailto:brouer@redhat.com

Layout of xdp_buff
If layout needs to be discussed…

struct xdp_buff {
 void * data; /* 0 8 */
 void * data_end; /* 8 8 */
 void * data_meta; /* 16 8 */
 void * data_hard_start; /* 24 8 */
 long unsigned int handle; /* 32 8 */
 struct xdp_rxq_info * rxq; /* 40 8 */

 /* size: 48, cachelines: 1, members: 6 */
 /* last cacheline: 48 bytes */
};

SKB creation outside drivers: using metadata and HW-offloads? - Jesper Dangaard Brouer < >brouer@redhat.com
21

mailto:brouer@redhat.com

