Ol off &

XDP For the Rest of Us

Jesper Dangaard Brouer - Principal Engineer, Red Hat
Andy Gospodarek - Principal Engineer, Broadcom

Netdev 2.2, November 8th, 2017
South Korea, Seoul

Motivation for this talk

e Follow Up on NetDev 2.1 tutorial/talk

o Lesstime, focus on updates and new tools from XDP ecosystem

e Still motivated to:

o Demystify XDP and eBPF
o Help you understand and consume this new technology

https://www.netdevconf.org/2.1/session.html?gospodarek

What will you learn?

What do you get out of this presentation

What will you learn?

e Bring you up-to-date with the XDP ecosystem

o highlight subset of recent changes

e We want you in the driver's seat
o fast, user-programmable networking

e Teach you about some new tools

e Spark new ideas for XDP+BPF use-cases
o Going beyond DDoS and (bouncing) Load-Balancer use-cases

What will you NOT learn!

e Getting Started with eBPF and XDP

o |Is covered in Netdev 2.1 talk, like:

m Compiler toolchain LLVM / clang
m Compiling kernel/samples/bpf

e Source file split foo kern.c + foo user.c
e ELF-object containing map-definitions,

o How handled by BPF loader code

o Invoking appropriate BPF-syscalls

https://www.netdevconf.org/2.1/session.html?gospodarek

Want to understand drawing?
e Watch Netdev 2.1talk on YouTube ;-)

BPF LLVM foo_kern.bpf |

1
1
]
]
;
I
t

L]
]
BPF Bytecode 3 ' packen . :
s‘ 1 : Bytecode
e Y s % -
’ LY K ; :
' b ReadMaps |

: BPF Maps - . - [- A,

I - [] LY '

] . .] (]

: \:. ‘ss ; /!

: : \~~ *-..“‘ "I ',o Qy@‘
'] S - e - - - ’ F
) . Seaal eEmea=e = 6“

. : 0 TR ecacammmmu==" ¢
A : scals %4
void blk_start_request . b £0 SY o\/
(struct request *req) " v(\)*
]
blk dequeue request(req); : o vj}'
} : & 8
: ¢,
1
.cOre.c :
v /-0 "
bloc Kernel * Userspace

https://github.com/iovisor/bpf-docs/blob/master/bpf-internals-2.md
https://www.youtube.com/watch?v=iBkR4gvjxtE
https://github.com/tuxology

The XDP technology

A new era with user-programmable networking

Framing: The XDP technology

e XDP a new, lower layer in Linux network stack
o Programmable hook in drivers can run before allocating full SKB
o New building block for Linux kernel networking

e Operate at same "layer" as bypass solutions (like DPDK)
o Operate at same speeds as bypass solutions (low number of CPU instructions per packet)
o Raw-data access to (Ethernet) frame (before SKB exists)
o Anin-kernel fast-path (XDP core in Linux kernel v4.8)

e The XDP programming language is eBPF
o eBPF is bigger than XDP, complete compiler toolchain
o XDP just one-hook using/invoking eBPF

e Real power comes from using more bpf-hooks combined
o From userspace: Controlling XDP/BPF via maps

XDP + eBPF = User programmable networking

e XDP and eBPF really good combination

o New era in user programmable networking
e Kernel side: responsible for moving packet fast

e BPF side: maximum flexibility and opt-in
o User-programmable protocols and policies
o Administrators can quickly implement something
m No need to upgrade kernel
o Only run program code needed for use-case
m No accumulative feature bloat

e In-kernel solution
o Maintained by the Linux kernel community
o New XDP program deployed via atomic swap operation

XDP interface: the basics

e What can XDP do?

O

(@)

Can read and modify packet contents
Can push and pull headers

e XDP interface: BPF program returns an action-code

o O O O

(@)

XDP_DROP — very fast drop by recycling (DDoS mitigation)

XDP_PASS - pass possibly modified packet to network stack

XDP_TX — Transmit packet back out same interface with or without packet modification
XDP_ABORTED - also drop, but indicate error condition (catch via tracepoint)
XDP_REDIRECT - Transmit out other NIC or steer via maps

e All BPF programs interact via

O

(@)

Helper function that can lookup or modify kernel state
Shared maps that userspace and other bpf-programs can use to track state

10

Designed to cooperate with network stack

e How to handle new protocol/encapsulation
o That the kernel doesn't know yet?
o Without upgrading the running kernel!

e OnRX:
o XDP can adjust packet headers to something kernel understand
m E.g.steerinto VLAN devices
o XDP can add metadata to data buffer than can be used by other eBPF programs

e OnTX:

o BPF can add back (encapsulation) headers
m BPF hooks in Traffic Control or Socket filter
m Restore packet-data based on shared BPF-map, VLAN device or SKB marking

1

The XDP ecosystem

Where should you start?!?

XDP ecosystem

e Mailing lists:
o XDP newbies join: xdp-newbies@vger.kernel.org
o Kernel devel-side: netdev@vger.kernel.org
o BPF devel-side: iovisor-dev@lists.iovisor.org
e Sample code available:
o Kernel git-tree: samples/bpf/
o Github: prototype-kernel under samples/bpf/
o 1Ovisor BCC project (if you prefer Python)
e Documentation:
o prototype-kernel.readthedocs.io - plan integrate into kernel.org/doc

o Cilium: “BPF and XDP Reference Guide”

13

mailto:xdp-newbies@vger.kernel.org
mailto:netdev@vger.kernel.org
mailto:iovisor-dev@lists.iovisor.org
https://github.com/torvalds/linux/blob/master/samples/bpf/README.rst
https://github.com/netoptimizer/prototype-kernel/
https://github.com/netoptimizer/prototype-kernel/tree/master/kernel/samples/bpf
https://github.com/iovisor/bcc/
https://prototype-kernel.readthedocs.io
https://www.kernel.org/doc/html/latest/
http://cilium.readthedocs.io/en/latest/bpf/

Recent changes of interest

Since last NetDev 2.1 (April 2017, Montreal)
e Only covering constrained subset

Recent changes: BPF introspection

e Visibility into running BPF programs
o Kernel v4.13: BPF ID's for loaded progs and maps
o can be accessed and dumped from userspace

e bpbpftool
o Part of Kernel tree: tools/bpf/bpftool/
o Allows inspection and simple modification of BPF objects
o Easy to list all programs currently loaded

® xdp monitor .
o Part of kernel tree: samples/bpf «(\IP‘“V‘ V‘"’;,ﬁ
o BPF prog monitoring XDP via tracepoints o« gF
[J
o Helps debugging XDP

]
&%
o (;fo"w
oW
we

15

https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=dc4bb0e2356149aee4cdae061936f3bbdd45595c
https://git.kernel.org/pub/scm/linux/kernel/git/davem/net-next.git/tree/tools/bpf/bpftool
https://git.kernel.org/pub/scm/linux/kernel/git/davem/net-next.git/tree/samples/bpf/

Is an XDP program loaded?

S ip link show

2 <

el’lplsOfO: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500
link/ether 00:0a:f7:8d:ab:60 brd ff:ff:ff:ff:ff:ff

prog/xdp id 4

xdp gdisc mg

[...

16

bpftool

bpftool

Usage:

bpftool

[OPTIONS]

OBJECT { COMMAND

bpftool batch file FILE
bpftool version

OBJECT
OPTIONS

{ prog

{-J1--Json}

map }

help }

[{-pl--pretty}] }

17

bpftool map help
Usage: bpftool map show [MAP]
bpftool map dump MAP
bpftool map update MAP key BYTES value VALUE [UPDATE FLAGS]
bpftool map lookup MAP key BYTES
bpftool map getnext MAP [key BYTES]
bpftool map delete MAP key BYTES
bpftool map pin MAP FILE
bpftool map help

MAP := { id MAP ID | pinned FILE }

PROGRAM := { 1id PROG ID | pinned FILE | tag PROG TAG }
VALUE := { BYTES | MAP | PROGRAM }

UPDATE FLAGS := { any | exist | noexist }

OPTIONS := { {-jl--json} [{-pl--pretty}] }

bpftool

bpftool program help

Usage: bpftool prog show [PROG]
bpftool prog dump xlated PROG [{ file FILE | opcodes }]
bpftool prog dump jited PROG [{ file FILE | opcodes }]
bpftool prog pin PROG FILE
bpftool prog help

PROG := { id PROG ID | pinned FILE | tag PROG TAG }
OPTIONS := { {-Jl--Jjson} [{-pl|--pretty}] }

19

Running xdp ddos01 blacklist

xdp ddos0l blacklist --dev enplsOf0
Documentation:
XDP: DDoS protection via IPv4 blacklist

This program loads the XDP eBPF program into the kernel.

Use the cmdline tool for add/removing source IPs to the blacklist

and read statistics.

Attached to device:enpls0f0 (ifindex:2)

Export bpf-map:blacklist

Export bpf-map:verdict cnt

Export bpf-map:port blacklist

Export bpf-map:port blacklist drop count tcp

Export bpf-map:port blacklist drop count udp
blacklist modify () IP:198.18.50.3 key:0x33212C6
blacklist port modify () dport:80 key:0x50

:/sys/fs/bpf/ddos blacklist
:/sys/fs/bpf/ddos blacklist stat verdict
:/sys/fs/bpf/ddos port blacklist
:/sys/fs/bpf/ddos_port blacklist count tcp
:/sys/fs/bpf/ddos port blacklist count udp

https://github.com/netoptimizer/prototype-kernel/tree/master/kernel/samples/bpf

bpftool inspecting xdp ddos01 blacklist

bpftool prog show
4: xdp tag 575d0fdbaa6dde6b
loaded at Oct 25/15:04 wuid 0
xlated 864B Jjited 566B memlock 4096B map ids 5,6,7,8,9
bpftool map show
percpu hash flags 0x1
key 4B value 8B max entries 100000 memlock 14897152B
percpu array flags 0x0
key 4B value 8B max entries 4 memlock 4096B
percpu array flags 0x0
key 4B value 4B max entries 65536 memlock 4722688B
percpu array flags 0x0
key 4B wvalue 8B max entries 65536 memlock 4722688B

percpu_array flags 0x0
key 4B value 8B max entries 65536 memlock 4722688B

https://github.com/netoptimizer/prototype-kernel/tree/master/kernel/samples/bpf

bpftool inspecting eBPF maps

bpftool map dump

Key:

c6 12 32 03

CPU : 00 00 00 00 00 0O
CPU : 00 00 00 00 00 0O
value (CPU : 00 00 00 00 00 00

value (
(
(
value (CPU : 00 00 00 00 00 0O
(
(
(

value

CPU : 00 00 00 00 00 0O

CPU : 00 00 00 00 00 00
value (CPU : 00 00 00 00 00 00
value (CPU 07) : 00 00 00 00 00 0O
Found 1 element

printf "%d.%d.%$d.%d\n" Oxc6 0x12 0x32 0x03
198.18.50.3

value

value

bpftool now with JSON output

bpftool map --json dump id 5

[{"key":["Oxc6","0x12","0x32","0x03"],"values": [{"cpu":0,"value": ["0x00","0x00","0x00", "0
x00","0x00","0x00","0x00","0x00"]}, {"cpu":1,"value": ["0x00","0x00","0x00","0x00","0Ox00","
0x00","0x00","0x00"]}, {"cpu":2,"value":["0x00","0x00","0x00","0x00","0x00","0x00","0x00",
"0x00"]}, {"cpu":3,"value": ["0x00","0x00","0x00","0x00","0x00","0x00","0x00","0x00"]}, {"cp

u":4, "value": ["0x00", "0x00", "0x00", "0x00", "0x00", "0x00", "0x00", "0x00"] }, {"cpu":5, "value":
["0x00", "0x00", "0x00", "0x00", "0x00", "0x00", "0x00", "0x00"]}, {"cpu": 6, "value": ["0x00", "0x00
", "0x00", "0x00", "0x00", "0x00", "0x00", "0x00"]}, {"cpu":7, "value": ["0x00", "0x00", "0x00", "0x0
0", "0x00", "0x00™, "0x00™, "0x00"]}]}]

23

bpftool now with JSON output (cont)

bpftool map --json --pretty dump id 5
[{

"key": ["OXC6", "OXl2", "OX32", "OXO3"
I

"values": [{
"Cpu": O,
"value": ["Ox00","OxO0O0","0OxOO0","O0Ox00","0x00","0x00","0x00"™,"0x00"
]

"cpu": 1,
"value": ["Ox00","OxOO0","0OxO0","Ox00","0x00","0x00","0x00"™,"0x00"

[IIOXOO", HOXOO", HOXOO", HOXOO", HOXOO", HOXOO", HOXOO", "Ox00Q"

Load another XDP program on another interface

bpftool prog show

4: xdp tag 575d0fdbaa6dde6b
loaded at Oct 25/15:04 wuid 0
xlated 864B Jjited 566B memlock 4096B map ids 5,6,7,8,9
tag 0381911915bc8d7f

loaded at Oct 25/23:07 wuid 0
xlated 496B Jjited 339B memlock 4096B map ids 14
bpftool map show id 14
14: percpu array name rxcnt flags 0x0
key 4B value 8B max entries 256 memlock 20480B

25

xdp monitor as a debugging tool

./xdp monitor --stats

ACTION result PpPs pps—human-readable measure-period
XDP_ REDIRECT Success 31533 31,533 2.000119
XDP REDIRECT Error 0 0 2.000121

XDP ABORTED Exception 13274271 13,274,271 2.000121

Above results from XDP_REDIRECT+ cpumap:

e Misconfig resulted in all UDP (pktgen) traffic drop via XDP_ABORTED
Cmd: # xdp redirect cpu --dev ixgbel --prog 3 --cpu 2

e TCP request-response traffic flowing to another CPU (31Kpps)
Cmd: # netperf -H 172.16.0.2 -t TCP_RR

26

xdp redirect cpu + cpumap output

Program running while xdp monitor was inspecting system

./xdp redirect cpu --dev ixgbel --prog 3 --cpu 2

Running XDP/eBPF prog num:3

XDP-cpumap CPU:to pps extra-info
XDP-RX 0 13,273,868 13,273,868
XDP-RX 4 31,530 0

XDP-RX 13,305,399

cCpumap-engqueue : 31,530

cpumap-engueue 31,530

cpumap kthread 31,530

cpumap kthread 31,530

redirect err 0

xdp exception 0 3,273,869

cpu-dest/err

bulk-average
bulk-average
sched
sched-sum

Great tools, but “patches accepted”

e bpbpftool
o Decode/pretty-print more values stored in maps
o Inspect BPF progs before loaded (compare tag to running programs)
o Accumulate results in percpu maps (examples use them as counters)
® xdp monitor
o Use as a framework/example for more application development
o JSON output
o --oneshot support to gather current stats rather than running interactively

28

Recent changes: XDP metadata for BPF

e XDP metadata: generic and flexible
o Communication channel between XDP-hook and TC-hooks
o XDP dynamic reserve part of packet headroom
m Max 32-Bytes avail, BPF prog choose meaning
o Later BPF hooks (e.g. TC) load prog that knows meaning
m Can access, extract and populate SKB members,
B ed. skb->mark

e Provide way for XDP to cooperate with network stack
o Bysavinginfoin xdp buff->data meta area

29

Recent changes: XDP REDIRECT

e New XDP return code XDP REDIRECT
o Innovative part: Redirect using maps (use bpf redirect map())

e Redirect via maps:
o Introduces RX bulking, via flush operation after napi_poll
o Dynamic adaptive bulking
m Method of adding bulking without introducing additional latency
m Bulk only frames available in driver NAPI poll loop

e New map types for redirect
o devmap-BPF MAP TYPE DEVMAP
m Bulk effect via delaying HW tail/doorbell (like xmit_more)
O cpumap-BPF MAP TYPE CPUMAP
m Bulk 8 frame to remote CPU, amortize cross CPU cost
m Provide CPU separation at XDP “layer”

30

Use-cases

Even new use-cases you did not realize were possible...

Well known use-cases

DDoS protection

Load-balancing router (Facebook use-case)
Forwarding between containers (Cilium use-case)
Rapid prototyping of protocol extensions

32

Fix NIC and existing kernel limitations

e Handling protocols currently unknown to kernel
o Kernel upgrade not always easy or possible
m As described earlier XDP+BPF can help
m BUT even harder to upgrade hardware NIC
o NIC hardware cannot parse protocol
m Only safe option for hardware is delivery to single RX-queue
m Single core cannot scale to handle all traffic

e XDP_REDIRECT via cpumap helps

o Allow redistributing load on CPUs
o Benchmarks (ixgbe) shows it scales to 11 Mpps per RX CPU

33

Enable XDP offload of routing stack

e Functions like IPv4 forward could be handled by XDP

o See proposal for XDP sample (xdp_router_ipv4) implementing IPv4 forward

e Use normal Linux tools to change Routing and Neighbor tables

o Maintain BPF shadow maps of routing and ARP table
o Subscribe to changes via rtnetlink updates

e Use XDP_REDIRECT to rewrite packets and forward between known
destinations

34

http://lkml.kernel.org/r/1507620532-25804-2-git-send-email-Christina.Jacob@cavium.com

The End

Are we out of time yet?

XDP Summary

e In-kernel fast-path solution

e Programmable networking inside the network stack!

e Lower maintenance and deployment cost as it is part of the
Linux Kernel

e Does not take over NIC hardware and isolate it from the
network stack

36

Thanks to

e XDP + BPF combined effort of many people
Alexei Starovoitov
Daniel Borkmann
Brenden Blanco
Tom Herbert
John Fastabend
Martin KaFai Lau
Jakub Kicinski
Michael S. Tsirkin
Jason Wang
Saeed Mahameed
Tarig Toukan
Edward Cree

o 0O o 0o 0O 0o o O o o o o

37

