
이해력

XDP For the Rest of Us
Jesper Dangaard Brouer - Principal Engineer, Red Hat
Andy Gospodarek - Principal Engineer, Broadcom

Netdev 2.2, November 8th, 2017
South Korea, Seoul

Motivation for this talk

● Follow Up on NetDev 2.1 tutorial/talk
○ Less time, focus on updates and new tools from XDP ecosystem

● Still motivated to:
○ Demystify XDP and eBPF
○ Help you understand and consume this new technology

2

https://www.netdevconf.org/2.1/session.html?gospodarek

What will you learn?

What do you get out of this presentation

What will you learn?

● Bring you up-to-date with the XDP ecosystem
○ highlight subset of recent changes

● We want you in the driver's seat
○ fast, user-programmable networking

● Teach you about some new tools
● Spark new ideas for XDP+BPF use-cases

○ Going beyond DDoS and (bouncing) Load-Balancer use-cases

4

● Getting Started with eBPF and XDP
○ Is covered in Netdev 2.1 talk, like:

■ Compiler toolchain LLVM / clang
■ Compiling kernel/samples/bpf

● Source file split foo_kern.c + foo_user.c
● ELF-object containing map-definitions,

○ How handled by BPF loader code
○ Invoking appropriate BPF-syscalls

What will you NOT learn!

5

https://www.netdevconf.org/2.1/session.html?gospodarek

Want to understand drawing?
● Watch Netdev 2.1 talk on YouTube ;-)

C
re

di
t
to

:

●
S
u
ch

a
k
ra

 ‘
tu

xo
lo

g
y’
 S

h
a
rm

a

6

https://github.com/iovisor/bpf-docs/blob/master/bpf-internals-2.md
https://www.youtube.com/watch?v=iBkR4gvjxtE
https://github.com/tuxology

The XDP technology

A new era with user-programmable networking

Framing: The XDP technology

● XDP a new, lower layer in Linux network stack
○ Programmable hook in drivers can run before allocating full SKB
○ New building block for Linux kernel networking

● Operate at same "layer" as bypass solutions (like DPDK)
○ Operate at same speeds as bypass solutions (low number of CPU instructions per packet)
○ Raw-data access to (Ethernet) frame (before SKB exists)
○ An in-kernel fast-path (XDP core in Linux kernel v4.8)

● The XDP programming language is eBPF
○ eBPF is bigger than XDP, complete compiler toolchain
○ XDP just one-hook using/invoking eBPF

● Real power comes from using more bpf-hooks combined
○ From userspace: Controlling XDP/BPF via maps

8

XDP + eBPF = User programmable networking

● XDP and eBPF really good combination
○ New era in user programmable networking

● Kernel side: responsible for moving packet fast
● BPF side: maximum flexibility and opt-in

○ User-programmable protocols and policies
○ Administrators can quickly implement something

■ No need to upgrade kernel
○ Only run program code needed for use-case

■ No accumulative feature bloat

● In-kernel solution
○ Maintained by the Linux kernel community
○ New XDP program deployed via atomic swap operation

9

XDP interface: the basics

● What can XDP do?
○ Can read and modify packet contents
○ Can push and pull headers

● XDP interface: BPF program returns an action-code
○ XDP_DROP – very fast drop by recycling (DDoS mitigation)

○ XDP_PASS – pass possibly modified packet to network stack
○ XDP_TX – Transmit packet back out same interface with or without packet modification
○ XDP_ABORTED – also drop, but indicate error condition (catch via tracepoint)

○ XDP_REDIRECT – Transmit out other NIC or steer via maps

● All BPF programs interact via
○ Helper function that can lookup or modify kernel state
○ Shared maps that userspace and other bpf-programs can use to track state

10

Designed to cooperate with network stack

● How to handle new protocol/encapsulation
○ That the kernel doesn't know yet?
○ Without upgrading the running kernel!

● On RX:
○ XDP can adjust packet headers to something kernel understand

■ E.g. steer into VLAN devices
○ XDP can add metadata to data buffer than can be used by other eBPF programs

● On TX:
○ BPF can add back (encapsulation) headers

■ BPF hooks in Traffic Control or Socket filter
■ Restore packet-data based on shared BPF-map, VLAN device or SKB marking

11

The XDP ecosystem

Where should you start?!?

XDP ecosystem

● Mailing lists:
○ XDP newbies join: xdp-newbies@vger.kernel.org
○ Kernel devel-side: netdev@vger.kernel.org
○ BPF devel-side: iovisor-dev@lists.iovisor.org

● Sample code available:
○ Kernel git-tree: samples/bpf/
○ Github: prototype-kernel under samples/bpf/
○ IOvisor BCC project (if you prefer Python)

● Documentation:
○ prototype-kernel.readthedocs.io - plan integrate into kernel.org/doc
○ Cilium: “BPF and XDP Reference Guide”

13

mailto:xdp-newbies@vger.kernel.org
mailto:netdev@vger.kernel.org
mailto:iovisor-dev@lists.iovisor.org
https://github.com/torvalds/linux/blob/master/samples/bpf/README.rst
https://github.com/netoptimizer/prototype-kernel/
https://github.com/netoptimizer/prototype-kernel/tree/master/kernel/samples/bpf
https://github.com/iovisor/bcc/
https://prototype-kernel.readthedocs.io
https://www.kernel.org/doc/html/latest/
http://cilium.readthedocs.io/en/latest/bpf/

Recent changes of interest

Since last NetDev 2.1 (April 2017, Montreal)

● Only covering constrained subset

Recent changes: BPF introspection

● Visibility into running BPF programs
○ Kernel v4.13: BPF ID's for loaded progs and maps
○ can be accessed and dumped from userspace

● bpftool
○ Part of Kernel tree: tools/bpf/bpftool/
○ Allows inspection and simple modification of BPF objects
○ Easy to list all programs currently loaded

● xdp_monitor
○ Part of kernel tree: samples/bpf
○ BPF prog monitoring XDP via tracepoints
○ Helps debugging XDP

Th
an

ks
to

:

●
M

ar
ti
n

K
aF

ai
 L

au
 (
Fa

ce
bo

ok
)

●
Jak

ub
 K

ic
in

sk
i
(N

et
ro

no
m
e)

15

https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=dc4bb0e2356149aee4cdae061936f3bbdd45595c
https://git.kernel.org/pub/scm/linux/kernel/git/davem/net-next.git/tree/tools/bpf/bpftool
https://git.kernel.org/pub/scm/linux/kernel/git/davem/net-next.git/tree/samples/bpf/

Is an XDP program loaded?

$ ip link show

2: enp1s0f0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 xdp qdisc mq [...]
 link/ether 00:0a:f7:8d:ab:60 brd ff:ff:ff:ff:ff:ff
 prog/xdp id 4

16

bpftool

bpftool
Usage: bpftool [OPTIONS] OBJECT { COMMAND | help }
 bpftool batch file FILE
 bpftool version

 OBJECT := { prog | map }
 OPTIONS := { {-j|--json} [{-p|--pretty}] }

17

bpftool

bpftool map help

bpftool map help
Usage: bpftool map show [MAP]
 bpftool map dump MAP
 bpftool map update MAP key BYTES value VALUE [UPDATE_FLAGS]
 bpftool map lookup MAP key BYTES
 bpftool map getnext MAP [key BYTES]
 bpftool map delete MAP key BYTES
 bpftool map pin MAP FILE
 bpftool map help

 MAP := { id MAP_ID | pinned FILE }
 PROGRAM := { id PROG_ID | pinned FILE | tag PROG_TAG }
 VALUE := { BYTES | MAP | PROGRAM }
 UPDATE_FLAGS := { any | exist | noexist }
 OPTIONS := { {-j|--json} [{-p|--pretty}] }

18

bpftool

bpftool program help
Usage: bpftool prog show [PROG]
 bpftool prog dump xlated PROG [{ file FILE | opcodes }]
 bpftool prog dump jited PROG [{ file FILE | opcodes }]
 bpftool prog pin PROG FILE
 bpftool prog help

 PROG := { id PROG_ID | pinned FILE | tag PROG_TAG }
 OPTIONS := { {-j|--json} [{-p|--pretty}] }

19

Running xdp_ddos01_blacklist
xdp_ddos01_blacklist --dev enp1s0f0
Documentation:
 XDP: DDoS protection via IPv4 blacklist

This program loads the XDP eBPF program into the kernel.
Use the cmdline tool for add/removing source IPs to the blacklist
and read statistics.

 - Attached to device:enp1s0f0 (ifindex:2)
 - Export bpf-map:blacklist to file:/sys/fs/bpf/ddos_blacklist
 - Export bpf-map:verdict_cnt to file:/sys/fs/bpf/ddos_blacklist_stat_verdict
 - Export bpf-map:port_blacklist to file:/sys/fs/bpf/ddos_port_blacklist
 - Export bpf-map:port_blacklist_drop_count_tcp to file:/sys/fs/bpf/ddos_port_blacklist_count_tcp
 - Export bpf-map:port_blacklist_drop_count_udp to file:/sys/fs/bpf/ddos_port_blacklist_count_udp
blacklist_modify() IP:198.18.50.3 key:0x33212C6
blacklist_port_modify() dport:80 key:0x50

20

https://github.com/netoptimizer/prototype-kernel/tree/master/kernel/samples/bpf

bpftool inspecting xdp_ddos01_blacklist
bpftool prog show
4: xdp tag 575d0fd6aa6dde66

 loaded_at Oct 25/15:04 uid 0
 xlated 864B jited 566B memlock 4096B map_ids 5,6,7,8,9

bpftool map show
5: percpu_hash flags 0x1

 key 4B value 8B max_entries 100000 memlock 14897152B
6: percpu_array flags 0x0

 key 4B value 8B max_entries 4 memlock 4096B
7: percpu_array flags 0x0

 key 4B value 4B max_entries 65536 memlock 4722688B
8: percpu_array flags 0x0

 key 4B value 8B max_entries 65536 memlock 4722688B
9: percpu_array flags 0x0

 key 4B value 8B max_entries 65536 memlock 4722688B

21

https://github.com/netoptimizer/prototype-kernel/tree/master/kernel/samples/bpf

bpftool inspecting eBPF maps
bpftool map dump id 5
Key:
c6 12 32 03
value (CPU 00): 00 00 00 00 00 00 00 00
value (CPU 01): 00 00 00 00 00 00 00 00
value (CPU 02): 00 00 00 00 00 00 00 00
value (CPU 03): 00 00 00 00 00 00 00 00
value (CPU 04): 00 00 00 00 00 00 00 00
value (CPU 05): 00 00 00 00 00 00 00 00
value (CPU 06): 00 00 00 00 00 00 00 00
value (CPU 07): 00 00 00 00 00 00 00 00
Found 1 element
printf "%d.%d.%d.%d\n" 0xc6 0x12 0x32 0x03
198.18.50.3

22

bpftool now with JSON output
bpftool map --json dump id 5
[{"key":["0xc6","0x12","0x32","0x03"],"values":[{"cpu":0,"value":["0x00","0x00","0x00","0
x00","0x00","0x00","0x00","0x00"]},{"cpu":1,"value":["0x00","0x00","0x00","0x00","0x00","
0x00","0x00","0x00"]},{"cpu":2,"value":["0x00","0x00","0x00","0x00","0x00","0x00","0x00",
"0x00"]},{"cpu":3,"value":["0x00","0x00","0x00","0x00","0x00","0x00","0x00","0x00"]},{"cp
u":4,"value":["0x00","0x00","0x00","0x00","0x00","0x00","0x00","0x00"]},{"cpu":5,"value":
["0x00","0x00","0x00","0x00","0x00","0x00","0x00","0x00"]},{"cpu":6,"value":["0x00","0x00
","0x00","0x00","0x00","0x00","0x00","0x00"]},{"cpu":7,"value":["0x00","0x00","0x00","0x0
0","0x00","0x00","0x00","0x00"]}]}]

Thanks to
:

● Quent
in M

onne
t (N

etr
onome)

23

bpftool now with JSON output (cont)
bpftool map --json --pretty dump id 5
[{

 "key": ["0xc6","0x12","0x32","0x03"
],
 "values": [{
 "cpu": 0,
 "value": ["0x00","0x00","0x00","0x00","0x00","0x00","0x00","0x00"
]
 },{
 "cpu": 1,
 "value": ["0x00","0x00","0x00","0x00","0x00","0x00","0x00","0x00"
]
 },{
 "cpu": 2,
 "value": ["0x00","0x00","0x00","0x00","0x00","0x00","0x00","0x00"
[...]

24

Load another XDP program on another interface
bpftool prog show
4: xdp tag 575d0fd6aa6dde66

 loaded_at Oct 25/15:04 uid 0
 xlated 864B jited 566B memlock 4096B map_ids 5,6,7,8,9

8: xdp tag 0381911915bc8d7f
 loaded_at Oct 25/23:07 uid 0
 xlated 496B jited 339B memlock 4096B map_ids 14

bpftool map show id 14
14: percpu_array name rxcnt flags 0x0

key 4B value 8B max_entries 256 memlock 20480B

25

xdp_monitor as a debugging tool

./xdp_monitor --stats
ACTION result pps pps-human-readable measure-period
XDP_REDIRECT Success 31533 31,533 2.000119
XDP_REDIRECT Error 0 0 2.000121
XDP_ABORTED Exception 13274271 13,274,271 2.000121

Above results from XDP_REDIRECT+ cpumap:
● Misconfig resulted in all UDP (pktgen) traffic drop via XDP_ABORTED

Cmd: # xdp_redirect_cpu --dev ixgbe1 --prog 3 --cpu 2
● TCP request-response traffic flowing to another CPU (31Kpps)

Cmd: # netperf -H 172.16.0.2 -t TCP_RR

26

xdp_redirect_cpu + cpumap output

Program running while xdp_monitor was inspecting system

./xdp_redirect_cpu --dev ixgbe1 --prog 3 --cpu 2

Running XDP/eBPF prog_num:3
XDP-cpumap CPU:to pps drop-pps extra-info
XDP-RX 0 13,273,868 0 13,273,868 cpu-dest/err
XDP-RX 4 31,530 0 0 cpu-dest/err
XDP-RX total 13,305,399 0
cpumap-enqueue 4:2 31,530 0 1.00 bulk-average
cpumap-enqueue sum:2 31,530 0 1.00 bulk-average
cpumap_kthread 2 31,530 0 31,530 sched
cpumap_kthread total 31,530 0 31,530 sched-sum
redirect_err total 0 0
xdp_exception total 0 13,273,869

27

Great tools, but “patches accepted”

● bpftool
○ Decode/pretty-print more values stored in maps
○ Inspect BPF progs before loaded (compare tag to running programs)
○ Accumulate results in percpu maps (examples use them as counters)

● xdp_monitor
○ Use as a framework/example for more application development
○ JSON output
○ --oneshot support to gather current stats rather than running interactively

28

Recent changes: XDP metadata for BPF

● XDP metadata: generic and flexible
○ Communication channel between XDP-hook and TC-hooks
○ XDP dynamic reserve part of packet headroom

■ Max 32-Bytes avail, BPF prog choose meaning
○ Later BPF hooks (e.g. TC) load prog that knows meaning

■ Can access, extract and populate SKB members,
■ e.g. skb->mark

● Provide way for XDP to cooperate with network stack
○ By saving info in xdp_buff->data_meta area

29

Recent changes: XDP_REDIRECT

● New XDP return code XDP_REDIRECT
○ Innovative part: Redirect using maps (use bpf_redirect_map())

● Redirect via maps:
○ Introduces RX bulking, via flush operation after napi_poll
○ Dynamic adaptive bulking

■ Method of adding bulking without introducing additional latency
■ Bulk only frames available in driver NAPI poll loop

● New map types for redirect
○ devmap - BPF_MAP_TYPE_DEVMAP

■ Bulk effect via delaying HW tail/doorbell (like xmit_more)
○ cpumap - BPF_MAP_TYPE_CPUMAP

■ Bulk 8 frame to remote CPU, amortize cross CPU cost
■ Provide CPU separation at XDP “layer”

30

Use-cases

Even new use-cases you did not realize were possible...

Well known use-cases

● DDoS protection
● Load-balancing router (Facebook use-case)
● Forwarding between containers (Cilium use-case)
● Rapid prototyping of protocol extensions

32

Fix NIC and existing kernel limitations

● Handling protocols currently unknown to kernel
○ Kernel upgrade not always easy or possible

■ As described earlier XDP+BPF can help
■ BUT even harder to upgrade hardware NIC

○ NIC hardware cannot parse protocol
■ Only safe option for hardware is delivery to single RX-queue
■ Single core cannot scale to handle all traffic

● XDP_REDIRECT via cpumap helps
○ Allow redistributing load on CPUs
○ Benchmarks (ixgbe) shows it scales to 11 Mpps per RX CPU

33

Enable XDP offload of routing stack

● Functions like IPv4 forward could be handled by XDP
○ See proposal for XDP sample (xdp_router_ipv4) implementing IPv4 forward

● Use normal Linux tools to change Routing and Neighbor tables
○ Maintain BPF shadow maps of routing and ARP table
○ Subscribe to changes via rtnetlink updates

● Use XDP_REDIRECT to rewrite packets and forward between known
destinations

34

http://lkml.kernel.org/r/1507620532-25804-2-git-send-email-Christina.Jacob@cavium.com

The End

Are we out of time yet?

XDP Summary

● In-kernel fast-path solution
● Programmable networking inside the network stack!
● Lower maintenance and deployment cost as it is part of the

Linux Kernel
● Does not take over NIC hardware and isolate it from the

network stack

36

Thanks to

● XDP + BPF combined effort of many people
○ Alexei Starovoitov
○ Daniel Borkmann
○ Brenden Blanco
○ Tom Herbert
○ John Fastabend
○ Martin KaFai Lau
○ Jakub Kicinski
○ Michael S. Tsirkin
○ Jason Wang
○ Saeed Mahameed
○ Tariq Toukan
○ Edward Cree

37

