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Who am IWho am I

● Name: Jesper Dangaard Brouer
– Linux Kernel Developer at Red Hat

– Edu: Computer Science for Uni. Copenhagen
● Focus on Network, Dist. sys and OS

– Linux user since 1996, professional since 1998
● Sysadm, Kernel Developer, Embedded

– OpenSource projects, author of
– ADSL-optimizer, CPAN IPTables::libiptc, IPTV-Analyzer

● Patches accepted into
– Linux kernel, iproute2, iptables, libpcap and Wireshark

– Organizer of Netfilter Workshop 2013
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What will we learn?What will we learn?

● Learn, artificial benchmarking by industry standard
– gave us crappy Internet (under-load) with bufferbloat

● Learn, That the car queue analogy is dead
– and the water-fountain is a better analogy

● Learn, the Linux Kernel is to blame
– buffer are everywhere, also inside kernel and NICs

● Learn, how we have fixed the Kernel
– with BQL (Byte Queue Limit) and TSQ (TCP Small Queue)

● Learn, about how CoDel ("coddle") works
– the new holy-grail of bufferbloat AQM
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What is bufferbloatWhat is bufferbloat

● Bufferbloat is excess buffering of packets
– excessive buffer increase, provide no added value

– resulting in high latency

● Misguided attempt to avoid all packet loss?
● Not all packet loss is evil:

– Packet loss is essential for correct operation

– Need timely congestion notification (also for ECN)
● Long queues mess up this feedback
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Dark matter of the InternetDark matter of the Internet

● Bufferbloat - Term now well established
– By Jim Gettys (starting around 2009)

– IETF Journal 2011: Bufferbloat: Dark Buffers in the Internet

– http://www.internetsociety.org/articles/bufferbloat-dark-buffers-internet

● The dark matter/buffers of the Internet
– Only exposed when queuing occurs

– Never see these buffers until they start to fill

● As we have experienced, fixing it in one place
– expose yet another level of buffering

http://www.internetsociety.org/articles/bufferbloat-dark-buffers-internet
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How bad is it?How bad is it?

● Single TCP flow can fill up the queue
– ADSL Upstream 512Kbit/s -> easy results in 1.2 sec delays



 7/41 Beyond the existences of Bufferbloat

What was the queue sizeWhat was the queue size

● Buffer Bloat: The calculations
– http://netoptimizer.blogspot.dk/2010/12/buffer-bloat-calculations.html

– Bandwidth is 454 Kbit/s (ADSL overhead)

– Measured delay was 1138 ms

– Buffer size: 454 Kbit/s * 1138 ms = 64581 bytes
● (Comes from TCP window size)

● Transmission delay of a 1500 bytes (MTU) packet is
– 1500 bytes / 454 Kbit/s = 26.34 ms

● Surprise:
– 64KBytes is a lot of queue on a 512 Kbit/s link

http://netoptimizer.blogspot.dk/2010/12/buffer-bloat-calculations.html


 8/41 Beyond the existences of Bufferbloat

Bidirectional traffic also suffersBidirectional traffic also suffers

● ADSL link 2Mbit/s download 512 Kbit/s upload
– ACK pkts for download, delayed on upload link
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What happenedWhat happened

● Historically
– Memory was expensive, small queues in HW

– Memory is cheaper now, large queue in HW

● Nobody noticed bad effects, because
– Used the wrong measurements

● artificial lab benchmarks
– (not representative of real traffic)
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Bad industry benchmarkingBad industry benchmarking

● The official benchmark is always
– Bandwidth and perhaps Packets Per Second

●  Hey wait a minute
– Forgot to measure latency

– Forgot to do bidirectional testing

– Forgot to look at Latency under load

"It's the Latency, Stupid"

--Stuart Cheshire, May 1996.
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New Benchmarking neededNew Benchmarking needed

●  Dave Taht is working on RRUL
– Realtime Response Under Load test

● Toke Høiland-Jørgensen, test tools avail on github
– https://github.com/tohojo/netperf-wrapper

– http://akira.ruc.dk/~tohojo/bufferbloat/

https://github.com/tohojo/netperf-wrapper
http://akira.ruc.dk/~tohojo/bufferbloat/
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Prerequisite for AQM (Active Queue Management)Prerequisite for AQM (Active Queue Management)

"A modern AQM is just one piece of the solution to bufferbloat"
Cite: http://queue.acm.org/detail.cfm?id=2209336

● Do packet scheduling, at bottleneck
– Need to be bufferbloat aware

● Active Queue Management (like CoDel) have no effect
– When you don't control the queue

http://queue.acm.org/detail.cfm?id=2209336
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Good vs. bad queueGood vs. bad queue

● Buffers and queues is a necessary part of the network
● Good queue:

– Function as shock absorber, allow and handle burst

● Bad queue:
– Long standing queue, Only adds delay

● CoDel: first AQM to distinguish
– between good vs. bad queue
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Problem: Buffers are everywhereProblem: Buffers are everywhere

● Buffers are everywhere!
– Also inside the kernel network stack

– Hidden queues in the NIC

– Wireless drivers especially bad (do packet aggregates)

● Cannot deploy any AQM e.g. CoDel
– before we have control of the queue

– packet queue must form at the qdisc level

● Two recent techniques in the kernel
– BQL - Byte Queue Limit (by Tom Herbert/Google)

– TSQ - TCP Small Queue (by Eric Dumazet/Google)
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BQL motivationBQL motivation

● Goal of Byte Queue Limit (BQL):
– reduce latency caused by excessive queuing HW

– without sacrificing throughput

● BQL essential for CoDel/AQM
– Don't want queuing in the HW device

– Need to move queue to the qdisc
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What BQL doesWhat BQL does

● Try to avoid "over" queuing in the NIC
● Dynamic adjust queuing to what NIC is able to TX

– by tracking TX completion

● Based on number of bytes (the NIC dequeued recently)

– Better than number of packets
● as bytes correlates with the transmission delay

● Not strict, allow to be exceeded
● Tracking generally, grows fast and shrinks slowly
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BQL needs driver modificationBQL needs driver modification

● One problem with BQL
– Need to modify every NIC driver

– Thus, not all drivers support BQL yet

● Use API (include/linux/netdevice.h):
– netdev_tx_sent_queue()

● Called to inform stack when packets are queued

– netdev_tx_completed_queue()
● Called at end of transmit completion to inform stack of 

number of bytes processed

– netdev_tx_reset_queue()
● optional to reset state in the stack
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BQL kernel detailsBQL kernel details

● Kernel details:
– It uses the __QUEUE_STATE_STACK_XOFF bit

– Based on Dynamic Queue Limits (DQL) API
● include/linux/dynamic_queue_limits.h

– Maintained per TX HW queue
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TSQ - TCP Small QueuesTSQ - TCP Small Queues

● Queuing also occurred inside TCP stack
– Eric Dumazet solved, with TCP Small Queues (TSQ)

● Sockets are marked throttled
– if amount of data waiting to be transmitted (sk_wmem_alloc)

● is above limit

– Use sk_buff destructor to "open-up" (needs tasklet tricks)

– (more info see http://lwn.net/Articles/507065/)

● Default size
– Minimum allow two packets

– Due to packet aggregation TSO / GSO

– The limit is 2x 64K bytes

– Adjust via: /proc/sys/net/ipv4/tcp_limit_output_bytes

http://lwn.net/Articles/507065/
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CoDel: The AQM grail for bufferbloat?CoDel: The AQM grail for bufferbloat?

● After fixing the Linux stack (with BQL and TSQ)
– Queuing occur in the right place (in the kernel)

● Need bufferbloat aware AQM algorithm
– CoDel: Controlling Queue Delay 

● by Kathleen Nichols and Van Jacobson

● Van Jacobson great talk about CoDel
– at IETF84 (Vancouver 2012)

● Video/sound and Slides

Implemented in Linux 3.5 (by Eric Dumazet and Dave Taht)

and avail for ns2 and ns3

http://queue.acm.org/detail.cfm?id=2209336
http://recordings.conf.meetecho.com/Recordings/watch.jsp?recording=IETF84_TSVAREA&chapter=part_3%20
http://www.ietf.org/proceedings/84/slides/slides-84-tsvarea-4.pdf
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Van Jacobson killed the car analogyVan Jacobson killed the car analogy

The car queue analogy is broken

– The outside observed 
delays are the same

– The inside dynamics are 
completely different
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Van Jacobson water-fountain(1/2)Van Jacobson water-fountain(1/2)

Better analogy is a water-fountain with a pump

● It is a closed loop servo system
● This is how TCP works

– due TCP-ACK to flow balance
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Van Jacobson water-fountain(2/2)Van Jacobson water-fountain(2/2)

● The water-level in the pond is NOT affected by:
– Flow rate, pump pressure or bigger pipes

● Can change the water-level by
– adding or removing water

● till the overflow drain

● The pond is the queue (in this closed loop servo system)

– its the backlog for the pump to process

● Don't need a huge pond to run the fountain
– just minimum to keep the pump from running dry
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TCP self-clocking Window Flow ControlTCP self-clocking Window Flow Control

● Packets are streached out in time, after bottleneck time-space is maintained

● The ACK feedback maintains a steady state, queue formed stays constant

● The 5 packet queue is the “pond” in the water-fountain / bufferbloat issue

● For a flow, only a single bottleneck on path, due to time spacing
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CoDel design goal: Do no harmCoDel design goal: Do no harm

● Top level design goal: Do no harm
– Only turns it self "on" when there is a problem

– either does nothing

– or reduces delay without affecting throughput

● Makes it perfect for wide deployment
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CoDel: Good vs. bad queueCoDel: Good vs. bad queue

● CoDel basically solves determining
– the difference between good vs. bad queue

● Good queue: Function as shock absorber, allow and handle burst

● Bad queue: Long standing queue, only adds delay

● Queuing viewed as a servo loop feedback system
– Observe that (TCP) bursts go away in a RTT

– Queue that does not go away in a RTT is bad queue

– Good queue is min queue size over a sliding window
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CoDel: Queue size in bytes is wrongCoDel: Queue size in bytes is wrong

● Measure queue size in bytes (is the traditional method)

– It is bad because:
● we really just care about the delay queue causes
● to compute delay, need to know (output) bandwidth
● (and bandwidth can change over time)

● Instead look at time-in-queue rather than bytes
– Easy to directly measure (delay of a single packet)

– Termed: Sojourn Time ("a temporary stay")
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Byte queue does not scaleByte queue does not scale

● Classical byte counting
– Have coupling to a shared state (bytes in queue)

– between enqueue and dequeue

– requiring locking (bad scaling)
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CoDel: Sojourn Time (time-in-queue)CoDel: Sojourn Time (time-in-queue)

● The beauty of measuring time-in-queue (sojourn time)
– No locking required

● Simply timestamp SKB/packet on enqueue
● Calc time-in-queue (sojourn time) at dequeue time
● Be smart at dequeue time

– Basically allow unlimited enqueue
● Not a problem, memory was cheap right

– Works for time-varying bandwidth
● e.g. wireless and shared links
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Sojourn Multi-Queue behaviorSojourn Multi-Queue behavior

● Surprising good Multi-Queue behavior
– MQ HW does not affect time-in-queue measurement

– Packets will arrive at the same rate with MQ HW

– Output rate/bandwidth is the same

– Thus, time-in-queue is same measurement

● Simply measured time used by the entire system
– which is better than byte-measuring what happened 

in a specific queue

● Plus no-locking also gives very good MQ behavior
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CoDel: Min queue size neededCoDel: Min queue size needed

● Cannot let link go idle
– Min 1 MTU packet size time over bottleneck link

● Due to TCP self-clocking MTU delay at bottleneck

– Also need 2 packets, as might not arrive well spaced

● How much more queue will increase throughput?
– and not cause too much in delays

● TCP control law affect us
– Packet drop cuts TCP window in half

● Cutting too small window hurts throughput
● as it takes too long (RTTs) to ramp up
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CoDel: The trade-off setpoint targetCoDel: The trade-off setpoint target

● Need a trade-off between bandwidth-and-delay
– Van Jacobson quantifies this trade-off

– See his talk explaining this (28 min slide 17,18,19,20)

● Minimum sojourn time (setpoint target)

– must be 5% of the (nominal) target RTT

– which in CoDel is 100 ms, giving 5 ms

– This yields substantial utilization improvement

●  for small added delay.
● Nominal RTT target should be bigger than any real RTT

– of connections going through the box.

http://recordings.conf.meetecho.com/Recordings/watch.jsp?recording=IETF84_TSVAREA&chapter=part_3
http://www.ietf.org/proceedings/84/slides/slides-84-tsvarea-4.pdf
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CoDel: Simplified algorithmCoDel: Simplified algorithm

● Oversimplified version of the basic algorithm
– If sojourn time > 5 ms (setpoint target)

● for 100 ms nominal target RTT

– Then begin to drop packets
● increasing according to a control law

– that is TCP friendly
● basically: drop more and more packets

– if the queue stays congested

● Real algo see: 
– http://queue.acm.org/detail.cfm?id=2209336

http://queue.acm.org/detail.cfm?id=2209336
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CoDel: Please use fq_codelCoDel: Please use fq_codel

● fq_codel: Fair Queue + CoDel
– Almost: SFQ + CoDel

– But smarter, distinguish "new" vs. "old" flows

– Result: favors interactive flows

● Try it! - one-liner enable via:

tc qdisc add dev ethX root fq_codel
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CoDel: Deployment issueCoDel: Deployment issue

● Home gateway is the bottleneck
– queue occur inside the ADSL or Cable modem

● Move the queue by introducing another bottleneck
– Another router box in front

– With ratelimiting to push-back/obtain queue control

– Sacrifice bandwidth to become the bottleneck link

– Also looses dynamic adjust, e.g. "boost" products

● REMEMBER: Take ADSL link layer into account
– Simply use tc “linklayer” option

● I implemented that back in 2005
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ADSL linklayer overheadADSL linklayer overhead

How much bandwidth to sacrifice?

ACK packets on 40 bytes
● uses 106 bytes on wire

(2x ATM 53 bytes frames)

● Due to ADSL encap overhead 
(40+10 > 48)

● An 62% overhead, for a very 
common packet

Fix, just add to your “tc” command:

tc ... linklayer ADSL overhead 10
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AQM comparison results (1/2)AQM comparison results (1/2)

● Toke's CDF (Cumulative Distribution Function) results
– CDF plot of ping time distributions for bidirectional TCP test

http://akira.ruc.dk/~tohojo/bufferbloat/bufferbloat-final.pdf
http://akira.ruc.dk/~tohojo/bufferbloat/tcp_bidirectional-ping_cdf.pdf
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AQM comparison results (2/2)AQM comparison results (2/2)
● Why to choose fq_codel

– CDF plot of ping time distributions for the RRUL test

● fq_codel is a clear winner
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ConclusionsConclusions

● Have we found the cure?
– Yes, Have fixed internal kernel stack buffering

– Yes, CoDel is bufferbloat aware 

– Yes, but getting it deployed is the challenge
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Future workFuture work

● What is missing
– Update every home router on the planet...

– Change fq_codel to be default qdisc

– Minor stuff
● More work on wireless (works well, but HW problems)

● More work on slow link
● Tuning CoDel drop restart point

– 3G deployment/fixing also needed 
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The EndThe End

● Questions?
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