
Challenge: 100Gbit/s around the corner1/35

Network stack challenges

at increasing speeds
The 100Gbit/s challenge

Jesper Dangaard Brouer
Principal kernel Engineer

Red Hat inc.

DevConf, Feb 2016



Challenge: 100Gbit/s around the corner2/35

Overview

● Understand 100Gbit/s challenge and time budget
● Measurements: understand the costs in the stack?

● Recent accepted changes
● TX bulking, xmit_more and qdisc dequeue bulk

● Memory allocator limitations
● Extending SLUB with bulk API

● Future work needed
● RX, qdisc, icache



Challenge: 100Gbit/s around the corner3/35

Coming soon: 100 Gbit/s

● Increasing network speeds: 10G → 40G → 100G
● challenge the network stack

● Rate increase, time between packets get smaller
● Frame size 1538 bytes (MTU incl. Ethernet overhead)

● at  10Gbit/s == 1230.4 ns between packets (815Kpps)
● at  40Gbit/s ==  307.6 ns between packets (3.26Mpps)
● at 100Gbit/s ==  123.0 ns between packets (8.15Mpps)

● Time used in network stack
● need to be smaller to keep up at these increasing rates



Challenge: 100Gbit/s around the corner4/35

Pour-mans solution to 100Gbit/s

● Recently got some 100Gbit/s NICs
● If you don't, no problem:

●  use 10Gbit/s NICs with smaller frames

● Smallest frame size 84 bytes (due to Ethernet overhead)

● at 10Gbit/s == 67.2 ns between packets (14.88Mpps)

● How much CPU budget is this?
● Approx 201 CPU cycles on a 3GHz CPU
● Approx 269 CPU cycles on a 4GHz CPU



Challenge: 100Gbit/s around the corner5/35

100Gbit/s NICs do exist!

● Thanks to Mellanox, now have 3x 100G NICs



Challenge: 100Gbit/s around the corner6/35

Is this possible with hardware?

● Network stack bypass solutions
● Grown over recent years

● Like netmap, PF_RING/DNA, DPDK, PacketShader, 
OpenOnload etc.

● RDMA and IBverbs avail in kernel, long time

● Have shown kernel is not using HW optimally
● On same hardware platform

● (With artificial network benchmarks)
● Hardware can forward 10Gbit/s wirespeed smallest packet

● On a single CPU !!!



Challenge: 100Gbit/s around the corner7/35

Single core performance

● Linux kernel have been scaling with number of cores
● hides regressions for per core efficiency

● latency sensitive workloads have been affected

● Linux need to improve efficiency per core
● IP-forward test, single CPU only 1-2Mpps (1000-500ns)

● (Adding many cores Linux does scale up to 12Mpps)

● Bypass alternatives handle 14.8Mpps per core (67ns)
● although this is like comparing rockets and airplanes



Challenge: 100Gbit/s around the corner8/35

Understand: nanosec time scale

● This time scale is crazy!
● 67.2ns => 201 cycles (@3GHz)

● Important to understand time scale
● Relate this to other time measurements

● Next measurements done on
● Intel CPU E5-2630 @2.3 GHz
● Unless explicitly stated otherwise



Challenge: 100Gbit/s around the corner9/35

Time-scale: cache-misses

● A single cache-miss takes: 32 ns
● Two misses: 2x32=64ns
● almost total 67.2 ns budget is gone

● Linux skb (sk_buff) is 4 cache-lines (on 64-bit)
● writes zeros to these cache-lines, during alloc.
● Fortunately not full cache misses

● usually cache hot, so not full miss



Challenge: 100Gbit/s around the corner10/35

Time-scale: cache-references

● Usually not a full cache-miss
● memory usually available in L2 or L3 cache
● SKB usually hot, but likely in L2 or L3 cache.

● CPU E5-xx can map packets directly into L3 cache
● Intel calls this: Data Direct I/O (DDIO) or DCA

● Measured on E5-2630 (lmbench command "lat_mem_rd 1024 128")

● L2 access costs 4.3ns
● L3 access costs 7.9ns
● This is a usable time scale



Challenge: 100Gbit/s around the corner11/35

Time-scale: "LOCK" operation

● Assembler instructions "LOCK" prefix
● for atomic operations like locks/cmpxchg/atomic_inc
● some instructions implicit LOCK prefixed, like xchg

● Measured cost
● atomic "LOCK" operation costs 8.23ns (E5-2630)

● Between 17-19 cycles (3 different CPUs)

● Optimal spinlock usage lock+unlock (same single CPU)

● Measured spinlock+unlock calls costs 16.1ns
● Between 34-39 cycles (3 different CPUs)

https://github.com/netoptimizer/network-testing/blob/master/src/overhead_cmpxchg.c
https://github.com/netoptimizer/prototype-kernel/blob/master/kernel/lib/time_bench_sample.c


Challenge: 100Gbit/s around the corner12/35

Time-scale: System call overhead

● Userspace syscall overhead is large
● (Note measured on E5-2695v2)

● Default with SELINUX/audit-syscall: 75.34 ns
● Disabled audit-syscall: 41.85 ns

● Large chunk of 67.2ns budget
● Some syscalls already exists to amortize cost

● By sending several packet in a single syscall
● See: sendmmsg(2) and recvmmsg(2) notice the extra "m"
● See: sendfile(2) and writev(2)
● See: mmap(2) tricks and splice(2)

http://man7.org/linux/man-pages/man2/sendmmsg.2.html
http://man7.org/linux/man-pages/man2/recvmmsg.2.html
http://man7.org/linux/man-pages/man2/sendfile.2.html
http://man7.org/linux/man-pages/man2/writev.2.html
http://man7.org/linux/man-pages/man2/mmap.2.html
http://man7.org/linux/man-pages/man2/splice.2.html


Challenge: 100Gbit/s around the corner13/35

Time-scale: Sync mechanisms

● Knowing the cost of basic sync mechanisms
● Micro benchmark in tight loop

● Measurements on CPU E5-2695
● spin_{lock,unlock}: 34 cycles(tsc) 13.943 ns
● local_BH_{disable,enable}: 18 cycles(tsc) 7.410 ns
● local_IRQ_{disable,enable}:   7 cycles(tsc) 2.860 ns
● local_IRQ_{save,restore}: 37 cycles(tsc) 14.837 ns

● Notice: IRQ-save/restore cost more than spin_lock 

https://github.com/netoptimizer/prototype-kernel/blob/master/kernel/lib/time_bench_sample.c


Challenge: 100Gbit/s around the corner14/35

Main tools of the trade

● Out-of-tree network stack bypass solutions
● Like netmap, PF_RING/DNA, DPDK, PacketShader, 

OpenOnload, etc.

● How did others manage this in 67.2ns?
● General tools of the trade is:

● batching, especially TX batching to HW queues
● preallocation, prefetching,
● staying cpu/numa local, avoid locking,
● shrink meta data to a minimum, reduce syscalls,
● faster cache-optimal data structures
● lower instruction-cache misses



Challenge: 100Gbit/s around the corner15/35

Batching is a fundamental tool

● Challenge: Per packet processing cost overhead
● Use batching/bulking opportunities

● Where it makes sense, avoid introduce latency
● Possible at many different levels

● Simplified explanation: How to increase time budget
● Remove per packet processing overhead
● E.g. processing 10 packets in a bundle/batch

● 67.2 ns = 672 ns time between 10 pkt bundles
● 201 cycles => 2010 cycles



Challenge: 100Gbit/s around the corner16/35

Recent changes

What has been done recently



Challenge: 100Gbit/s around the corner17/35

Unlocked Driver TX potential

● Pktgen 14.8Mpps single core (10G wirespeed)
● Spinning same SKB (no mem allocs)

● Avail since kernel v3.18-rc1

● Primary trick: Bulking packet (descriptors) to HW
● What is going on: MMIO writes

● Defer tailptr write, which notifies HW
● Very expensive write to non-cacheable mem

● Hard to perf profile
● Write to device

● does not showup at MMIO point
● Next LOCK op is likely “blamed”



Challenge: 100Gbit/s around the corner18/35

How to use new TX capabilities?

● Next couple of slides
● How to integrate new TX capabilities

● In a sensible way in the Linux Kernel
● e.g. without introducing latency



Challenge: 100Gbit/s around the corner19/35

Intro: xmit_more API toward HW

● SKB extended with xmit_more indicator
● Stack use this to indicate (to driver)
● another packet will be given immediately

● After/when ->ndo_start_xmit() returns

● Driver usage
● Unless TX queue filled
● Simply add the packet to HW TX ring-queue
● And defer the expensive indication to the HW

● When to “activate” xmit_more?



Challenge: 100Gbit/s around the corner20/35

Challenge: Bulking without added latency

● Hard part:
● Use bulk API without adding latency

● Principal: Only bulk when really needed
● Based on solid indication from stack

● Do NOT speculative delay TX
● Don't bet on packets arriving shortly
● Hard to resist...

● as benchmarking would look good
● Like DPDK does...



Challenge: 100Gbit/s around the corner21/35

Use SKB lists for bulking

● Changed: Stack xmit layer
● Adjusted to work with SKB lists
● Simply use existing skb→next ptr

● E.g. See dev_hard_start_xmit()
● Skb→next ptr simply used as xmit_more indication

● Lock amortization
● TXQ lock no-longer per packet cost
● dev_hard_start_xmit() send entire SKB list
● while holding TXQ lock (HARD_TX_LOCK) 



Challenge: 100Gbit/s around the corner22/35

Existing aggregation in stack GRO/GSO

● Stack already have packet aggregation facilities
● GRO (Generic Receive Offload)
● GSO (Generic Segmentation Offload)
● TSO (TCP Segmentation Offload)

● Allowing bulking of these
● Introduce no added latency

● Xmit layer adjustments allowed this
● validate_xmit_skb() handles segmentation if needed



Challenge: 100Gbit/s around the corner23/35

Qdisc layer bulk dequeue

● A queue in a qdisc (Linux Traffic Control)
● Very solid opportunity for bulking

● Already delayed, easy to construct skb-list

● Rare case of reducing latency
● Decreasing cost of dequeue (locks) and HW TX

● Before: a per packet cost
● Now: cost amortized over packets

● Qdisc locking have extra locking cost
● Due to __QDISC___STATE_RUNNING state
● Only single CPU run in dequeue (per qdisc)



Challenge: 100Gbit/s around the corner24/35

Choice: Qdisc TX bulk require BQL

● Only support qdisc bulking for BQL drivers
● Implement BQL in your driver now!

● BQL – Byte Queue Limit

● Needed to avoid overshooting NIC capacity
● Overshooting cause requeue of packets

● Current qdisc layer requeue cause
● Head-of-Line blocking
● Future: better requeue in individual qdiscs?

● Extensive experiments show
● BQL is very good at limiting requeue's



Challenge: 100Gbit/s around the corner25/35

FIB lookup and other optimizations

● IP-forwarding route lookups
● FIB lookup (were) most expensive component
● Alex Duyck improved this recently!

● Lookout for Alex Duyck's optimizations e.g.:
● Low level eth_proto_is_802_3 optimized
● Page frag alloc cache generalized and optimized

● See __alloc_page_frag()

● Finer grained barriers in drivers (dma_wmb/dma_rmb)



Challenge: 100Gbit/s around the corner26/35

Summary: Linux perf improvements

● Linux performance, recent improvements
●  approx past 2 years:

● Lowest TX layer (single core, pktgen):
● Started at: 4 Mpps → 14.8 Mpps (← max 10G wirespeed)

● Lowest RX layer (single core):
● Started at: 6.4 Mpps → 12 Mpps (still experimental)

● IPv4-forwarding
● Single core: 1 Mpps → 2 Mpps
● Multi core : 6 Mpps → 12 Mpps (RHEL7.2 benchmark)



Challenge: 100Gbit/s around the corner27/35

Future work

● What needs to be worked on?
● Large subject, more details at NetDev 1.1 (in Seville 

next week)
● Network Performance BoF

● Current stack limited by
● Taking advantage of TX capabilities
● RX performance/limitations (DMA or mem alloc limits?)

● Qdisc “baseline” overhead
● Memory allocator, hitting slowpath
● Instruction cache misses, forward case



Challenge: 100Gbit/s around the corner28/35

What about RX?

● TX looks good now: How do RX perform?
● Remember: 100Gbit/s big 1500 byte frames = 8.15Mpps

● Evaluate lowest RX layer, with 100G driver
● Simply drop packet in driver on RX, single core

● Disappointed to only see 6.4Mpps
● Optimized driver to: RX driver drop: 12Mpps → 82.7 ns

● Avoid cache miss on eth_trans_type() + icache RX loop

● +using SLUB bulk free SKB API, + tuning SLUB allocator

● What is max performance from this layer?:
● Extrapolated: 19 Mpps as max performance (single core)

● Subtract, SLUB (7.3 ns) and SKB (22.9 ns) related → 52.5 ns



Challenge: 100Gbit/s around the corner29/35

Instruction Cache misses

● Packet forward case
● Too slow, when calc/add components

● IP-forward 1Mpps → 1000ns
● Tuned IP-forward 2Mpps → 500ns

● Profiling shows many inst-cache misses
● Better fwd performance with new GCC compilers

● Measured factor x10 reduced icache-misses
● Code level icache optimizations

● Make stack work in “stages”
● Driver bulking on RX

● Small RX queue, before activating stack call loop
● Do more in GRO layer, and for RPS



Challenge: 100Gbit/s around the corner30/35

Optimize memory allocator

● Identified memory alloc bottleneck
● Network stack is hitting MM/slab slowpath

● Optimizing this was challenging work

● Well, almost done!
● Bulk alloc and free API (slab/kmem_cache)

● API accepted into kernel 4.3
● Optimizations to appear in kernel 4.4

● Network stack usage
● Posted: http://thread.gmane.org/gmane.linux.network/384302/

● Likely appear in next kernel release

http://thread.gmane.org/gmane.linux.network/384302/


Challenge: 100Gbit/s around the corner31/35

Memory Allocator limitations

● Artificial RX benchmark (Drop packets early)
● Don't see real limitations of mem alloc

● Real network stack usage, hurts allocator

1) RX-poll alloc up-to 64 packets (SKBs)

2) TX put packets into TX ring

3) Wait for TX completion, free up-to 256 SKBs

● Above cause
● IP-forward to hit “slowpath” for SLUB



Challenge: 100Gbit/s around the corner32/35

Latest work: SLUB bulking is fast!

● Optimizing SLUB allocator (patchset V4 accepted)

● Bulk alloc + free cost (CPU i7-4790K @4GHz)
● SLUB fastpath: 42 cycles(tsc) / slowpath: 105 cycles
● Hitting: fastpath of SLUB

● SLUB bulk  x1 → 49 cycles(tsc)
● SLUB bulk  x2 → 30 cycles(tsc)
● SLUB bulk  x4-16 → 20 – 17 cycles
● (below net stack use-case) my latest perf improvements!
● SLUB bulk x32-64 → 18 – 23 cycles
● SLUB bulk x128-250 → 27 – 37 cycles

● Notice: faster than single object “fastpath”!!!

http://thread.gmane.org/gmane.linux.kernel.mm/139268/focus=139348
https://github.com/netoptimizer/prototype-kernel/blob/b4688559b/kernel/mm/slab_bulk_test01.c


Challenge: 100Gbit/s around the corner33/35

Qdisc path overhead

● Qdisc code path takes 6 LOCK ops
● LOCK cost on this arch: approx 8 ns

● 8 ns * 6 LOCK-ops = 48 ns pure lock overhead
● Measured qdisc overhead: between 58ns to 68ns

● 58ns: via trafgen –qdisc-path bypass feature
● 68ns: via ifconfig txlength 0 qdisc NULL hack

● Thus, using between 70-82% on LOCK ops
● Dequeue side lock cost, now amortized

● But only in-case of a queue
● Empty queue, “direct_xmit” still see this cost
● Enqueue still per packet locking



Challenge: 100Gbit/s around the corner34/35

Future: Lockless qdisc

● Motivation for lockless qdisc (cmpxchg based)

1) Direct xmit case (qdisc len==0) “fast-path”
● Still requires taking all 6 locks!

2) Enqueue cost reduced (qdisc len > 0)
● from 16ns to 10ns

● Measurement show huge potential for saving
● (lockless ring queue cmpxchg base implementation)

● If TCQ_F_CAN_BYPASS saving 58ns
● Difficult to implement 100% correct

● Not allowing direct xmit case: saving 48ns



Challenge: 100Gbit/s around the corner35/35

The End

● Most of these changes are avail in RHEL7.2
● Linux multi-core IPv4-routing scales to 12Mpps

● (RHEL7.1) 6Mpps → (RHEL 7.2) 12Mpps
● Lookup Alex Duyck talk from LinuxCon2015

● Come see: Network Performance BoF
● In Seville, at NetDev 1.1
● All about how to fix/improve the kernel network stack

Questions?

http://netdevconf.org/1.1/bof-network-performance-bof-jesper-dangaard-brouer.html
http://netdevconf.org/1.1/index.html


Challenge: 100Gbit/s around the corner36/35

Extra

● Extra slides



Challenge: 100Gbit/s around the corner37/35

Micro benchmark: kmem_cache

● Micro benchmarking code execution time
●  kmem_cache with SLUB allocator

● Fast reuse of same element with SLUB allocator
● Hitting reuse, per CPU lockless fastpath
● kmem_cache_alloc+kmem_cache_free = 19ns

● 42-48 cycles(tsc)

● Pattern of 256 alloc + 256 free (Based on ixgbe cleanup pattern)

● Cost increase to: 40ns
● 88-105 cycles



Challenge: 100Gbit/s around the corner43/35

Extra: pktgen stack bench

● Recent: pktgen inject packet into stack
● Useful for localhost bench without HW
● See script: pktgen_bench_xmit_mode_netif_receive.sh

● Default usage mode: Very early ingress drop in ip_rcv()
● 52,502,335pps → 19ns  (spinning same SKB)

● Usage: Measures SKB memory allocator performance
● Param “-b 0” disable burst, same drop point
● 7,206,871pps → 139ns  (CPU i7-4790K @ 4.00GHz)
● Difference: 120ns – too much other stuff

● Pktgen own overhead 30% (approx 42ns)
● 9.71% __build_skb (13.5ns)
● 10.82% __netdev_alloc_skb+__{free,alloc}_page_frag (15ns)
● 6.83% kmem_cache_alloc+free (9.5ns) → close to bench=10.814ns
● 4.55% ktime_get_with_offset+read_tsc (6.3ns) → strange PTP module



Challenge: 100Gbit/s around the corner44/35

Extra: Smarter clearing of SKBs

● Clearing SKB is expensive
● __build_skb() 40% spend in memset

● Translates into asm: rep stos
● Startup cost 15 cycles

● Suspect CPU stall/pipeline stall?

● Find smarter clearing or reduce SKB size?



Challenge: 100Gbit/s around the corner45/35

Extra: cost of clear SKB

● SKB “clear” 200 Bytes, SLAB object 256 Bytes (CPU i7-4790K @ 4.00GHz)

Note Bytes-to-clear Cycles Cycles per 256B

Hand-optimized 200 26

Rep-stos 200 36

Hand-optimized 256 32

Rep-stos 256 43

Below: rep-stos 512 72 36.00

3x 256 768 46 15.30

4x 1024 49 12.25

5x 1280 53 10.60

6x 1536 60 10.00

8x 2048 75 9.38

16x 4096 134 8.38

32x 8192 255 7.97



Challenge: 100Gbit/s around the corner46/35

Qdisc locking is nasty

● Always 6 LOCK operations (6 * 8ns = 48ns)

● Lock qdisc(root_lock) (also for direct xmit case)

● Enqueue + possible Dequeue
● Enqueue can exit if other CPU is running deq
● Dequeue takes __QDISC___STATE_RUNNING

● Unlock qdisc(root_lock)

● Lock TXQ

● Xmit to HW
● Unlock TXQ

● Lock qdisc(root_lock) (can release STATE_RUNNING)

● Check for more/newly enqueued pkts
● Softirq reschedule (if quota or need_sched)

● Unlock qdisc(root_lock)



Challenge: 100Gbit/s around the corner47/35

MM: Derived MM-cost via pktgen

● Hack: Implemented SKB recycling in pktgen
● But touch all usual data+skb areas, incl. zeroing

● Recycling only works for dummy0 device:
● No recycling: 3,301,677 pkts/sec = 303 ns
● With recycle: 4,424,828 pkts/sec = 226 ns

● Thus, the derived Memory Manager cost
● alloc+free overhead is (303 - 226): 77ns
● Slower than expected, should have hit slub fast-path

● SKB->data page is likely costing more than SLAB



Challenge: 100Gbit/s around the corner48/35

MM: Memory Manager overhead

● SKB Memory Manager overhead
● kmem_cache: between 19ns to 40ns

● Between: 42-105 cycles

● pktgen fastpath recycle derived: 77ns
● (77-19) = 58ns data/page + “touch” overhead?

● Larger than our time budget: 67.2ns

● Thus, for our performance needs
● Either, MM area needs improvements
● Or need some alternative faster mempool

https://git.kernel.org/cgit/linux/kernel/git/davem/net-next.git/tree/samples/pktgen/pktgen_bench_xmit_mode_netif_receive.sh


Challenge: 100Gbit/s around the corner49/35

Extra: Comparing Apples and Bananas?

● Comparing Apples and Bananas?
● Out-of-tree bypass solution focus/report

● Layer2 “switch” performance numbers
● Switching basically only involves:

● Move page pointer from NIC RX ring to TX ring
● Linux bridge

● Involves:
● Full SKB alloc/free
● Several look ups
● Almost as much as L3 forwarding



Challenge: 100Gbit/s around the corner52/35

Using TSQ

● TCP Small Queue (TSQ)
● Use queue build up in TSQ

● To send a bulk xmit
● To take advantage of HW TXQ tail ptr update

● Should we allow/use
● Qdisc bulk enqueue

● Detecting qdisc is empty allowing direct_xmit_bulk?


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 52

