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Intro

● This research seminar is about
● Software Variability and “Software Product Lines”
● For me, commonly know as ifdef challenges

● This is outside my area of expertise
● I work with the Linux kernel core network stack
● Cannot solve your research problems

● I'll share my interactions with annoying ifdefs
● In hope to give insight into more problems to solve ;-)
● And current state of handling ifdef build issues

● In the future I hope your research will help Linux
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Kernel Config #ifdef challenges

● Kernel's config allows great deal of customization
● Allow to run on big server and small embedded systems
● Embedded often compile out large parts of kernel
● Can be viewed as "Software Product Lines"

● Ifdef bugs can be hiding
● e.g. only visible in certain combinations of kernel configs

● Very subtle bugs can occur due to config ifdef's
● Your group have already analyzed some
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Kernel compile/build errors

● Most commonly and easy detectable
● Config combo's that result in kernel compile errors
● Some maintainers catch these themselves

● Before they push their git tree publicly

● Rest is caught by: kbuild robot
● Fengguang Wu at Intel have automated system to detect these
● (More on kbuild robot later)
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Kernel make system

● Kernel make have a
● make randconfig

● For generating random config options
● e.g. kbuild robot uses this

● There lots of default config per arch in
● linux/arch/*/configs/*defconfig

● Kbuild robot also uses these
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Common network issue: CONFIG_IPv6

● IPv6 support can be compiled out
● See CONFIG_IPV6
● This is a common thing people get wrong

● often only result in build bugs
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Recent Micro benchmarking work

● micro benchmarking:exclusive access kernel primitives

● Performance differs with different settings of
● CONFIG_PREEMPT

● Obviously, slightly more overhead getting exclusive access

● CONFIG_PREEMPT_COUNT
● can be enabled even if CONFIG_PREEMPT is disabled
● is almost as costly as CONFIG_PREEMPT
● can be selected by DEBUG_ATOMIC_SLEEP and 

DEBUG_KERNEL

● CONFIG_DEBUG_PREEMPT
● also adds a small cost extra

https://github.com/netoptimizer/prototype-kernel/blob/master/kernel/lib/time_bench_sample.c
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CONFIG_PREEMPT_*

● Functions like: local_bh_{disable,enable} and spinlocks
● Are affected by these preempt settings

● Performance and Algorithm correctness
● is affected by these preempt settings
● Developers need to test different combinations

● This is time consuming
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Recent Memory Management development

● In my recent work within
● The performance of Memory Management subsystem

● I need to juggle:
● CONFIG_SLUB_CPU_PARTIAL, SLUB_STATS,  

SLUB_DEBUG
● and the mentioned PREEMPT combinations

● While developing, need enabling
●  debugging options that catch errors and give stats

● When performance measuring
● need to disable all debug features
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Performance: Ifdef in C-struct

● Ifdef's in C-struct is a pain
● When optimizing for cacheline performance
● Element alignment depend ifdefs

● Can changes the cacheline boundaries
● Can result in false-sharing cacheline bouncing

● in other-wise performance optimized code

● Tedious process, optimize code for cacheline access
● I use tool "pahole" to inspect struct layout
● Adding ifdef, very annoying, requires recompiling

● nice-to-have: if pahole could account for these ifdefs

https://git.kernel.org/cgit/devel/pahole/pahole.git/
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Examples of structs with ifdefs

● struct sk_buff (include/linux/skbuff.h)
● CONFIG_XFRM, CONFIG_NF_CONNTRACK, 

CONFIG_BRIDGE_NETFILTER,  CONFIG_NET_SCHED, 
CONFIG_NET_CLS_ACT, CONFIG_NET_RX_BUSY_POLL, 
CONFIG_XPS, CONFIG_NETWORK_SECMARK

● Can result in memset touching 3 vs. 4 cachelines

● struct net (include/net/net_namespace.h)

● huge struct, due to many other structs as members
● cacheline alignment is a nightmare
● e.g. CONFIG_IPV6, CONFIG_IEEE802154_6LOWPAN, CONFIG_IP_SCTP, 

CONFIG_IP_DCCP, CONFIG_NETFILTER, CONFIG_NF_CONNTRACK,    
CONFIG_NF_TABLES, CONFIG_NF_DEFRAG_IPV6, 
CONFIG_WEXT_CORE, CONFIG_XFRM, CONFIG_IP_VS, 
CONFIG_MPLS
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Performance: removing code

● Ifdef's removing code sections
● Can (obviously) also improve performance

● two reasons:
● (1) Less instruction to be executed
● (2) Less use of instruction-cache

● Example: CONFIG_NET_CLS_ACT
● avoids calling "handle_ing()" in 

__netif_receive_skb_core()
● (which gets inlined, thus also reducing i-cache)
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Your research: good step forward

● You have already
● Found and analyzed 42 ifdef kernel bugs
● Categorized them
● Provided a online database at http://vbdb.itu.dk/

● In your article: “42 Variability Bugs in the Linux Kernel”
● http://www.itu.dk/people/brabrand/42-bugs.pdf

● No need for me to dig into the details

● Let's look at
● How do we catch some of these today?

http://vbdb.itu.dk/
http://www.itu.dk/people/brabrand/42-bugs.pdf
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The kbuild robot "0-DAY kernel build"

● The kbuild robot
● Currently best approach for catching ifdef build bugs
● Run by Fengguang Wu <fengguang.wu@intel.com>

● at Intel's Open Source Technology Center

● Comprehensive, but brute-force approach
● Sends email directly to developers based on git email

● Mailing lists:
● https://lists.01.org/mailman/listinfo/kbuild-all
● https://lists.01.org/mailman/listinfo/kbuild

mailto:fengguang.wu@intel.com
https://lists.01.org/mailman/listinfo/kbuild-all
https://lists.01.org/mailman/listinfo/kbuild
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Kbuild-robot: Catch build bugs

● Brute-force approach of
● Finding build bugs and compiler warnings

● test all 461 defconfigs defined in linux/arch/*/configs/
● generate 300+ randconfigs each day

● test kernel build + boot

● I their experience
● randconfigs is quite effective in catching build bugs
● They find static checks useful and efficient

● Out-number the number of runtime regressions they caught
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Kbuild-robot: More than build bugs

● Performance+power regression testing since 2013

● Functional tests are also supported

● Regressions are tracked for every test run
● perf/power/boot/functional/latency/memory

● Git repo for reproducing test results
● https://git.kernel.org/cgit/linux/kernel/git/wfg/lkp-tests.git/
● For developers to reproduce and fix

https://git.kernel.org/cgit/linux/kernel/git/wfg/lkp-tests.git/
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Stats(1) about kbuild robot 0-day tests

● Stats directly from Fengguang Wu

● Monitoring 500+ kernel git trees around the world
● can handle much more

● so welcome to send the git URL to test

● In a typical day, performs
● 12000+ kernel builds
● 20000+ kernel boots (mostly in QEMU)
● 12000+ runtime test jobs (mostly in physical machines)



Kernel Config #ifdef challenges18/24

Stats(2) about kbuild robot 0-day tests

● In a typical month, reports (no duplicates and low confident ones)

● 250 build errors
● 110 build warnings
● 60 sparse warnings
● 20 coccinelle warnings
● 6 smatch warnings
● 20 boot error/warnings
● 10 perf/power/functional changes
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Kbuild robot: “interface”

● High confident bugs/warnings
● Send directly to devel-emails based on git info
● And to mailing list (kbuild-all@01.org)

● https://lists.01.org/pipermail/kbuild-all/

● Low confident (may be false positives)
● Send to list (kbuild@01.org) for manual inspection

● https://lists.01.org/pipermail/kbuild/
● Manual forward email, if err/warn seems valid

● Needed: Tool for analyzing low confident ones

https://lists.01.org/pipermail/kbuild-all/
mailto:kbuild@01.org
https://lists.01.org/pipermail/kbuild/
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Tool idea

● As a developer or maintainer, I would like to know
● For a given patch: What config/ifdef is it affected by?
● Kbuild-robot could also it use

● but currently solves this brute-force, single devel cannot

● Especially useful for maintainers
● Before accepting patches

● Next slide:
● Subtle ifdef bug I introduced

● Didn't realize code was affected by this config



Kernel Config #ifdef challenges21/24

Example: ARRAY_SIZE() of spinlock array

● Array of spinlocks:
spinlock_t nf_conntrack_locks[CONNTRACK_LOCKS]

● Use ARRAY_SIZE(nf_conntrack_locks) in init-for-loop
#define ARRAY_SIZE(arr) (sizeof(arr) / sizeof((arr)[0]))

● How can this result is a div by zero warning?
● Because on uniprocessor (!CONFIG_SMP)

● spinlock_t ended-up being an empty definition

● (Note: This was caught by kbuild-robot)
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Kbuild robot lessons

● Experience from kbuild-robot also shows
● You don't need to fix the bugs yourself
● Detecting and delegating to original devel works well
● Important to separate low vs. high confidence ones

● to keep false positives low, to keep devel confidence high ;-)

● Also learn from: do good report format
● with git commit and reproducer notes

● Want high impact on the kernel
● Write a small tool for Fengguang Wu ;-)
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Efforts and assumptions

● On going effort to
● Put #ifdefs into header files by defining stub functions

● function available independently of config options
● no #ifdefs in the .c files.

● Upstream maintainers often do “make allyesconfig”
● Assumes provides the best coverage

● But likely not for feature-interaction bugs
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The End

● Thanks to
● Associate Professor, Claus Brabrand for inviting me
● Fengguang Wu, for feedback and stats

● And for building the kbuild-robot!
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Extra

● Extra slides
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Other tools

● Travis CI (Continous Integration): https://travis-ci.org/
● free for Open Source projects (on github)

● Coverity Scan static analysis https://scan.coverity.com/ 
● Avail for open source projects for free

● Your competitor(?): TypeChef
● https://github.com/ckaestne/TypeChef

https://travis-ci.org/
https://scan.coverity.com/
https://github.com/ckaestne/TypeChef
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