
Kernel Config #ifdef challenges1/24

Kernel Software Variability
commonly known as #ifdef challenges

Jesper Dangaard Brouer
Linux Kernel Developer

Red Hat inc.

ITU research seminar, April 2015

Kernel Config #ifdef challenges2/24

Intro

● This research seminar is about
● Software Variability and “Software Product Lines”
● For me, commonly know as ifdef challenges

● This is outside my area of expertise
● I work with the Linux kernel core network stack
● Cannot solve your research problems

● I'll share my interactions with annoying ifdefs
● In hope to give insight into more problems to solve ;-)
● And current state of handling ifdef build issues

● In the future I hope your research will help Linux

Kernel Config #ifdef challenges3/24

Kernel Config #ifdef challenges

● Kernel's config allows great deal of customization
● Allow to run on big server and small embedded systems
● Embedded often compile out large parts of kernel
● Can be viewed as "Software Product Lines"

● Ifdef bugs can be hiding
● e.g. only visible in certain combinations of kernel configs

● Very subtle bugs can occur due to config ifdef's
● Your group have already analyzed some

Kernel Config #ifdef challenges4/24

Kernel compile/build errors

● Most commonly and easy detectable
● Config combo's that result in kernel compile errors
● Some maintainers catch these themselves

● Before they push their git tree publicly

● Rest is caught by: kbuild robot
● Fengguang Wu at Intel have automated system to detect these
● (More on kbuild robot later)

Kernel Config #ifdef challenges5/24

Kernel make system

● Kernel make have a
● make randconfig

● For generating random config options
● e.g. kbuild robot uses this

● There lots of default config per arch in
● linux/arch/*/configs/*defconfig

● Kbuild robot also uses these

Kernel Config #ifdef challenges6/24

Common network issue: CONFIG_IPv6

● IPv6 support can be compiled out
● See CONFIG_IPV6
● This is a common thing people get wrong

● often only result in build bugs

Kernel Config #ifdef challenges7/24

Recent Micro benchmarking work

● micro benchmarking:exclusive access kernel primitives

● Performance differs with different settings of
● CONFIG_PREEMPT

● Obviously, slightly more overhead getting exclusive access

● CONFIG_PREEMPT_COUNT
● can be enabled even if CONFIG_PREEMPT is disabled
● is almost as costly as CONFIG_PREEMPT
● can be selected by DEBUG_ATOMIC_SLEEP and

DEBUG_KERNEL

● CONFIG_DEBUG_PREEMPT
● also adds a small cost extra

https://github.com/netoptimizer/prototype-kernel/blob/master/kernel/lib/time_bench_sample.c

Kernel Config #ifdef challenges8/24

CONFIG_PREEMPT_*

● Functions like: local_bh_{disable,enable} and spinlocks
● Are affected by these preempt settings

● Performance and Algorithm correctness
● is affected by these preempt settings
● Developers need to test different combinations

● This is time consuming

Kernel Config #ifdef challenges9/24

Recent Memory Management development

● In my recent work within
● The performance of Memory Management subsystem

● I need to juggle:
● CONFIG_SLUB_CPU_PARTIAL, SLUB_STATS,

SLUB_DEBUG
● and the mentioned PREEMPT combinations

● While developing, need enabling
● debugging options that catch errors and give stats

● When performance measuring
● need to disable all debug features

Kernel Config #ifdef challenges10/24

Performance: Ifdef in C-struct

● Ifdef's in C-struct is a pain
● When optimizing for cacheline performance
● Element alignment depend ifdefs

● Can changes the cacheline boundaries
● Can result in false-sharing cacheline bouncing

● in other-wise performance optimized code

● Tedious process, optimize code for cacheline access
● I use tool "pahole" to inspect struct layout
● Adding ifdef, very annoying, requires recompiling

● nice-to-have: if pahole could account for these ifdefs

https://git.kernel.org/cgit/devel/pahole/pahole.git/

Kernel Config #ifdef challenges11/24

Examples of structs with ifdefs

● struct sk_buff (include/linux/skbuff.h)
● CONFIG_XFRM, CONFIG_NF_CONNTRACK,

CONFIG_BRIDGE_NETFILTER, CONFIG_NET_SCHED,
CONFIG_NET_CLS_ACT, CONFIG_NET_RX_BUSY_POLL,
CONFIG_XPS, CONFIG_NETWORK_SECMARK

● Can result in memset touching 3 vs. 4 cachelines

● struct net (include/net/net_namespace.h)

● huge struct, due to many other structs as members
● cacheline alignment is a nightmare
● e.g. CONFIG_IPV6, CONFIG_IEEE802154_6LOWPAN, CONFIG_IP_SCTP,

CONFIG_IP_DCCP, CONFIG_NETFILTER, CONFIG_NF_CONNTRACK,
CONFIG_NF_TABLES, CONFIG_NF_DEFRAG_IPV6,
CONFIG_WEXT_CORE, CONFIG_XFRM, CONFIG_IP_VS,
CONFIG_MPLS

Kernel Config #ifdef challenges12/24

Performance: removing code

● Ifdef's removing code sections
● Can (obviously) also improve performance

● two reasons:
● (1) Less instruction to be executed
● (2) Less use of instruction-cache

● Example: CONFIG_NET_CLS_ACT
● avoids calling "handle_ing()" in

__netif_receive_skb_core()
● (which gets inlined, thus also reducing i-cache)

Kernel Config #ifdef challenges13/24

Your research: good step forward

● You have already
● Found and analyzed 42 ifdef kernel bugs
● Categorized them
● Provided a online database at http://vbdb.itu.dk/

● In your article: “42 Variability Bugs in the Linux Kernel”
● http://www.itu.dk/people/brabrand/42-bugs.pdf

● No need for me to dig into the details

● Let's look at
● How do we catch some of these today?

http://vbdb.itu.dk/
http://www.itu.dk/people/brabrand/42-bugs.pdf

Kernel Config #ifdef challenges14/24

The kbuild robot "0-DAY kernel build"

● The kbuild robot
● Currently best approach for catching ifdef build bugs
● Run by Fengguang Wu <fengguang.wu@intel.com>

● at Intel's Open Source Technology Center

● Comprehensive, but brute-force approach
● Sends email directly to developers based on git email

● Mailing lists:
● https://lists.01.org/mailman/listinfo/kbuild-all
● https://lists.01.org/mailman/listinfo/kbuild

mailto:fengguang.wu@intel.com
https://lists.01.org/mailman/listinfo/kbuild-all
https://lists.01.org/mailman/listinfo/kbuild

Kernel Config #ifdef challenges15/24

Kbuild-robot: Catch build bugs

● Brute-force approach of
● Finding build bugs and compiler warnings

● test all 461 defconfigs defined in linux/arch/*/configs/
● generate 300+ randconfigs each day

● test kernel build + boot

● I their experience
● randconfigs is quite effective in catching build bugs
● They find static checks useful and efficient

● Out-number the number of runtime regressions they caught

Kernel Config #ifdef challenges16/24

Kbuild-robot: More than build bugs

● Performance+power regression testing since 2013

● Functional tests are also supported

● Regressions are tracked for every test run
● perf/power/boot/functional/latency/memory

● Git repo for reproducing test results
● https://git.kernel.org/cgit/linux/kernel/git/wfg/lkp-tests.git/
● For developers to reproduce and fix

https://git.kernel.org/cgit/linux/kernel/git/wfg/lkp-tests.git/

Kernel Config #ifdef challenges17/24

Stats(1) about kbuild robot 0-day tests

● Stats directly from Fengguang Wu

● Monitoring 500+ kernel git trees around the world
● can handle much more

● so welcome to send the git URL to test

● In a typical day, performs
● 12000+ kernel builds
● 20000+ kernel boots (mostly in QEMU)
● 12000+ runtime test jobs (mostly in physical machines)

Kernel Config #ifdef challenges18/24

Stats(2) about kbuild robot 0-day tests

● In a typical month, reports (no duplicates and low confident ones)

● 250 build errors
● 110 build warnings
● 60 sparse warnings
● 20 coccinelle warnings
● 6 smatch warnings
● 20 boot error/warnings
● 10 perf/power/functional changes

Kernel Config #ifdef challenges19/24

Kbuild robot: “interface”

● High confident bugs/warnings
● Send directly to devel-emails based on git info
● And to mailing list (kbuild-all@01.org)

● https://lists.01.org/pipermail/kbuild-all/

● Low confident (may be false positives)
● Send to list (kbuild@01.org) for manual inspection

● https://lists.01.org/pipermail/kbuild/
● Manual forward email, if err/warn seems valid

● Needed: Tool for analyzing low confident ones

https://lists.01.org/pipermail/kbuild-all/
mailto:kbuild@01.org
https://lists.01.org/pipermail/kbuild/

Kernel Config #ifdef challenges20/24

Tool idea

● As a developer or maintainer, I would like to know
● For a given patch: What config/ifdef is it affected by?
● Kbuild-robot could also it use

● but currently solves this brute-force, single devel cannot

● Especially useful for maintainers
● Before accepting patches

● Next slide:
● Subtle ifdef bug I introduced

● Didn't realize code was affected by this config

Kernel Config #ifdef challenges21/24

Example: ARRAY_SIZE() of spinlock array

● Array of spinlocks:
spinlock_t nf_conntrack_locks[CONNTRACK_LOCKS]

● Use ARRAY_SIZE(nf_conntrack_locks) in init-for-loop
#define ARRAY_SIZE(arr) (sizeof(arr) / sizeof((arr)[0]))

● How can this result is a div by zero warning?
● Because on uniprocessor (!CONFIG_SMP)

● spinlock_t ended-up being an empty definition

● (Note: This was caught by kbuild-robot)

Kernel Config #ifdef challenges22/24

Kbuild robot lessons

● Experience from kbuild-robot also shows
● You don't need to fix the bugs yourself
● Detecting and delegating to original devel works well
● Important to separate low vs. high confidence ones

● to keep false positives low, to keep devel confidence high ;-)

● Also learn from: do good report format
● with git commit and reproducer notes

● Want high impact on the kernel
● Write a small tool for Fengguang Wu ;-)

Kernel Config #ifdef challenges23/24

Efforts and assumptions

● On going effort to
● Put #ifdefs into header files by defining stub functions

● function available independently of config options
● no #ifdefs in the .c files.

● Upstream maintainers often do “make allyesconfig”
● Assumes provides the best coverage

● But likely not for feature-interaction bugs

Kernel Config #ifdef challenges24/24

The End

● Thanks to
● Associate Professor, Claus Brabrand for inviting me
● Fengguang Wu, for feedback and stats

● And for building the kbuild-robot!

Kernel Config #ifdef challenges25/24

Extra

● Extra slides

Kernel Config #ifdef challenges26/24

Other tools

● Travis CI (Continous Integration): https://travis-ci.org/
● free for Open Source projects (on github)

● Coverity Scan static analysis https://scan.coverity.com/
● Avail for open source projects for free

● Your competitor(?): TypeChef
● https://github.com/ckaestne/TypeChef

https://travis-ci.org/
https://scan.coverity.com/
https://github.com/ckaestne/TypeChef

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26

