
Modifying libiptc:
Making large iptables rulesets scale

by
Jesper Dangaard Brouer <jdb@comx.dk>

Master of Computer Science
ComX Networks A/S

Netfilter Developers
Workshop 2008

d.1/10-2008

 2/16Netfilter: Making large iptables rulesets scale

Presentation overview

● You will learn:

– That the entire ruleset is copied to userspace (libiptc)

– That libiptc contained some scalability issues

– About my modifications to libiptc, to make it scale

– Remaining issues with iptables userspace locking

 3/16Netfilter: Making large iptables rulesets scale

Ruleset copied to userspace

● Ran into scalability issues with iptables

– when having large amount of chain

● Discover how iptables works:
– Entire ruleset copied to userspace

– After possibly multiple changes, copied back to kernel

● Performed by a IPTables Cache library "libiptc"
– iptables.c is a command line parser using this library

● Profiling...

 4/16Netfilter: Making large iptables rulesets scale

libiptc: scalability issues

● Minor:

– Inline functions iptcc_is_builtin() and set_changed()

– Don't sort all chains on pull-out, only on insert

● Major:

– Initial ruleset parsing slow

– Chain name lookup slow

 5/16Netfilter: Making large iptables rulesets scale

Issue: Initial ruleset parsing

● First scalability issue identified:
– Initial ruleset parsing

● Problem:

– Resolving jump chains is slow O(Chain*Rules)

– Each jump chain resolved
● Linearly, offset based, search of chain list

● Postpone fix

– Take advantage pull-out and commit system
● Only one “initial ruleset parsing” penalty

 6/16Netfilter: Making large iptables rulesets scale

Actually like pull-out and commit system

● Take advantage of pull-out and commit system

1. Pull-out ruleset (one initial ruleset parsing penalty)

2. Make all modification needed

3. Commit ruleset (to kernel)

– This is how iptables-restore works

● Extra bonus:

– Several rule changes appear atomic
● Update all rules related to a customer at once
● No need for temp chains and renaming

 7/16Netfilter: Making large iptables rulesets scale

Perl - IPTables::libiptc

● Cannot use iptables-restore/save

– SubnetSkeleton must have is_chain() test function

● Created CPAN IPTables::libiptc
– Chains: Direct libiptc calls

– Rules: Command like interface via iptables.c linking

– iptables extensions available on system, dynamic loaded

– No need to maintain or port iptables extensions

– Remember to commit()

● Postponed fixing "initial ruleset parsing"

 8/16Netfilter: Making large iptables rulesets scale

Next scalability issue: Chain lookup

● Slow chain name lookup

– is_chain() testing (internal iptcc_find_label())

– Cause by: linearly list search with strcmp()

● Affects: almost everything
● Rule create, delete, even listing.
● Multiple rule changes, eg. iptables-restore, SubnetSkeleton

● Rule listing (iptables -nL) with 50k chains:

– Takes approx 5 minutes!

– After my fix: reduced to 0.5 sec.

 9/16Netfilter: Making large iptables rulesets scale

Chains lookup: Solution
● Solution: binary search on chain names

● Important property chain list is sorted by name
● Keep original linked list data structure

– New data structure: "Chain index"
● Array with pointers into linked list with a given spacing (40)

– Result: better starting points when searching the linked list

0 1 2 3

B D F H J L N

Chain index: Array

C E

Chain list: linked list, sorted by chain name

OMKIG

Mainline: iptables ver.1.4.1, git:2008-01-15

 10/16Netfilter: Making large iptables rulesets scale

Chain index: Insert chain

● Handle: Inserting/creating new chains
● Inserting don't change correctness of chain index

– only cause longer lists
– rebuild after threshold inserts (355)

0 1 2 3

B D F H J L N P

Chain index: Array

Chain list: linked list, sorted by chain name

C EA

● Inserting before first element is special

 11/16Netfilter: Making large iptables rulesets scale

Chain index: Delete chain

● Handle: deletion of chains
– Delete chain not pointed to by chain index, no effect

– Delete chain pointed to by chain index, possible rebuild

● Replace index pointer with next pointer
● Only if next pointer not part of chain index

0 1 2 3

B D F H J L N

Chain index: Array

C E

Chain list: linked list, sorted by chain name

OMKIG

Rebuild array

 12/16Netfilter: Making large iptables rulesets scale

Solving: Initial ruleset parsing

● Back to fixing "initial ruleset parsing".
● Did have a fix, but was not 64-bit compliant (2007-11-26)

● Problem: Resolving jump rules is slow

– For each: Jump Rule
● Do a linearly, offset based, search of chain list

● Solution:
– Reuse binary search algorithm and data structure

– Realize chain list are both sorted by name and offsets

● Ruleset from kernel already sorted

mainline: iptables ver.1.4.2-rc1, git: 2008-07-03

 13/16Netfilter: Making large iptables rulesets scale

Summary: Load time

●Personal firewall
● Reload all rules on a production machine

● Chains: 5789
● Rules: 22827

 Number of calls 74659
 Total time used 1.92sec
 Average per call 0.00002567sec

action calls time per call
set_policy 1 0.00007701 0.00007701
append_rule 8399 0.49619532 0.00005908
insert_rule 4463 0.24729586 0.00005541
flush_entries 4726 0.03449988 0.00000730
init 1 0.04638195 0.04638195
commit 1 0.08120894 0.08120894
list_rules_IPs 1181 0.02705002 0.00002290
is_chain 46965 0.37487888 0.00000798
delete_rule 8922 0.60892868 0.00006825
Sum 74659 1.91651654sec

Total time entire script 23.72sec

 14/16Netfilter: Making large iptables rulesets scale

Summary: Open Source

● Open Source Status

– Chain lookup fix
● In iptables version 1.4.1

– 50k chains, listing 5 min -> 0.5 sec

– Initial ruleset parsing fix
● In iptables version 1.4.2-rc1

– Production, reached 10 sec -> 0.053 sec

– IPTables::libiptc
● Released on CPAN

– IPTables::SubnetSkeleton
● Available via http://people.netfilter.org/hawk/

http://people.netfilter.org/hawk/

 15/16Netfilter: Making large iptables rulesets scale

Remaining issue: No locking

● Ruleset pull-out and commit system

– Problem: Userspace race condition

1.Two processes pull-out ruleset

2.Process#1 commit

3.Process#2 commit ... what happens!?
• if ruleset entries are the same, p#2 overwrite p#1 rules

• possibly wrong counter updates
• if ruleset entries differ, p#2 fail with an errno=EAGAIN

● My solution: Simple file lock (flock) in /var/lock/

● Discussion?
● Don't lock on “-L” listing, because cannot use in a pipe

 16/16Netfilter: Making large iptables rulesets scale

The End

Goodbye
and thank you for accepting the patches...

81.161.128/0/18

195.135.216.0/22

87.72.0.0/16

82.211.224.0/19

 17/16Netfilter: Making large iptables rulesets scale

Extra slides

● Bonus slides

– if time permits

– or funny questions arise

