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Overview

● Part 1: Intro
● Understanding 10Gbit/s time budget

● Part 2: Measurements
● Where is the cost hiding in the Linux stack?

● Part 3: Tools of the trade used by others
● How did others manage this?

● Part 4: Realistically goals
● What is realistically doable in our stack?
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Part 1: Faster alternatives

● Out-of-tree network stack bypass solutions
● Grown over recent years

● Like netmap, PF_RING/DNA, DPDK, PacketShader, 
OpenOnload etc.

● Have shown kernel is not using HW optimally
● On same hardware platform

● They handle 10Gbit/s wirespeed smallest frame
● On a single CPU
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Part 1: General purpose network platform

● Linux Kernel is best platform available
● For general purpose networking

● But needs to rethink its architecture
● To also better adapt for current/future high-end network 

performance challenges
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Part 1: Understand wirespeed challenge

● First step: Understand engineering challenge
● Of processing 10Gbit/s wirespeed

● At the smallest Ethernet frame size
● On a single CPU

● The peak packet rate is:
● 14.88 Mpps (million packets per sec)

● Uni-directional on 10Gbit/s with smallest frame size
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Pert 1: What is the smallest Ethernet frame

● Ethernet specific (20 bytes)
● 12 bytes = inter-frame gap
● 8 bytes = MAC preamble

● Ethernet frame (64 bytes)
● 14 bytes = MAC header
● 46 bytes = Minimum payload size
● 4 bytes = Ethernet CRC

● Minimum size Ethernet frame is: 84 bytes (20 + 64)

https://en.wikipedia.org/wiki/Interpacket_gap


Challenge: 10Gbit/s wirespeed and beyond7/33

Packet Per Sec (pps) range

● PPS range of 10Gbit/s

● Peak packet rate: 14,880,952 pps
● calculated as: (10*10^9) bits/sec / (84 bytes * 8)

● 1500 MTU packet rate: 812,744 pps
● calculated as: (10*10^9) bits/sec / (1538 bytes * 8)
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Part 1: IMPORTANT: Time budget

● Important part to wrap-your-head around
● 14.88 Mpps time budget

● For processing a single packet is:

● 67.2 ns (nanoseconds) (calc as: 1/14880952*10^9 ns)

● This correspond to approx:
● 201 CPU cycles on a 3GHz CPU

● This is a very small time/cycles budget!
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Part 1: Understand: nanosec time scale

● Next: Important to understand time scale
● Need to relate this to other time measurements

● Next measurements done on
● Intel CPU E5-2630
● Unless explicitly stated otherwise
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Time: cache-misses

● A single cache-miss takes: 32 ns
● Two misses: 2x32=64ns
● almost total 67.2 ns budget is gone

● Linux skb (sk_buff) is 4 cache-lines (on 64-bit)
● writes zeros to these cache-lines, during alloc.
● usually cache hot, so not full miss
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Time: cache-references

● Usually not a full cache-miss
● memory usually available in L2 or L3 cache
● SKB usually hot, but likely in L2 or L3 cache.

● CPU E5-xx can map packets directly into L3 cache
● Intel calls this: Data Direct I/O (DDIO)

● Measured on E5-2630 (lmbench command "lat_mem_rd 1024 128")

● L2 access costs 4.3ns
● L3 access costs 7.9ns
● This is a usable time scale
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Time: "LOCK" operation

● Assembler instructions "LOCK" prefix
● for atomic operations like locks/cmpxchg/atomic_inc
● some instructions implicit LOCK prefixed, like xchg

● Measured cost
● atomic "LOCK" operation costs 8.25ns

● Optimal spinlock usage lock+unlock (same single CPU)

● two LOCK calls costs 16.5ns

https://github.com/netoptimizer/network-testing/blob/master/src/overhead_cmpxchg.c
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Time: System call overhead

● Userspace syscall overhead is large
● (Note measured on E5-2695v2)

● Default with SELINUX/audit-syscall: 75.34 ns
● Disabled audit-syscall: 41.85 ns

● Large chunk of 67.2ns budget
● Some syscalls already exists to amortize cost

● By sending several packet in a single syscall
● See: sendmmsg(2) and recvmmsg(2) notice the extra "m"
● See: sendfile(2) and writev(2)
● See: mmap(2) tricks and splice(2)

http://man7.org/linux/man-pages/man2/sendmmsg.2.html
http://man7.org/linux/man-pages/man2/recvmmsg.2.html
http://man7.org/linux/man-pages/man2/sendfile.2.html
http://man7.org/linux/man-pages/man2/writev.2.html
http://man7.org/linux/man-pages/man2/mmap.2.html
http://man7.org/linux/man-pages/man2/splice.2.html
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Part 2: Measurement results

● Where is the cost hiding in the Linux stack?
● Can point us at hotspots
● But architectural changes are likely need

● For larger performance wins

● Next measurements done on
● Intel CPU E5-2630
● Unless explicitly stated otherwise
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Part 2: Micro benchmark: kmem_cache

● Micro benchmarking code execution time
●  kmem_cache with SLUB allocator

● Fast reuse of same element with SLUB allocator
● Hitting reuse, per CPU lockless fastpath
● kmem_cache_alloc+kmem_cache_free = 22.4ns

● Pattern of 128 alloc + 128 free (Based on ixgbe cleanup pattern)

● Cost increase to: 40.2ns
● The SKB data/page also have similar MM-cost

● Thus, approx 80ns alloc+free overhead
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Part 2: Derived MM-cost via pktgen

● Hack: Implemented SKB recycling in pktgen
● But touch all usual data+skb areas, incl. zeroing

● Recycling only works for dummy0 device:
● No recycling: 3,301,677 pkts/sec = 303 ns
● With recycle: 4,424,828 pkts/sec = 226 ns

● Thus, the derived Memory Manager cost
● alloc+free overhead is (303 - 226): 77ns
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Part 2: Memory Manager overhead

● SKB Memory Manager overhead
● kmem_cache: approx 80ns
● pktgen derived: 77ns
● Larger than our time budget: 67.2ns

● Thus, for our performance needs
● Either, MM area needs improvements
● Or need some alternative faster mempool
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Part 2: Qdisc path overhead

● Optimal "fast-path" qdisc is empty, 6 LOCK ops
● LOCK cost on this arch: approx 8 ns
● 8 ns * 6 LOCK-ops = 48 ns pure lock overhead

● Measured qdisc overhead: between 58ns to 68ns
● 58ns: via trafgen –qdisc-path bypass feature
● 68ns: via ifconfig txlength 0 qdisc NULL hack

● Thus, using between 70-82% on LOCK ops
● Pure qdisc overhead

● As large as our 67.2 ns time budget
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Part 2: HW level TX batching

● Batch packets into ixgbe drivers HW TX ring buffer
● update TDT (Transmit Descriptor Tail) every N packets

● Pktgen showed significant perf improvement
● Tuning pktgen to send 7Mpps (single CPU)
● Update TDT every 32 packets, result 11Mpps

● (2x=9Mpps, 4x9.6Mpps, 8x=10.5Mpps, 16x=10.9Mpps)

● Thus, ixgbe hardware level batching worth doing
● Solution that does not increase latency, hard part



Challenge: 10Gbit/s wirespeed and beyond20/33

Part 3: main tools of the trade

● Out-of-tree network stack bypass solutions
● Like netmap, PF_RING/DNA, DPDK, PacketShader, 

OpenOnload, etc.

● How did others manage this in 67.2ns?
● General tools of the trade is:

● batching, preallocation, prefetching,
● staying cpu/numa local, avoid locking,
● shrink meta data to a minimum, reduce syscalls,
● faster cache-optimal data structures
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Part 3: Batching is essential

● Challenge: Per packet processing cost overhead
● Do massive use of batching/bulking
● Working on batch of packets amortize cost

● General don't do locking, but easy example:
● e.g. locking per packet, cost 2*8ns=16ns

● Batch processing while holding lock, amortize cost
● Batch 16 packets amortized lock cost 1ns
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Part 3: (Almost) no alloc/free memory cost

● Most fundamental difference:
●  not trying to save memory

● Preallocate huge amounts of memory
● In huge-pages to avoid TLB lookups
● Removes cost of per packet dynamic memory alloc
● Free is simple, e.g mark “free” and return to mempool
● Never zero memory, can only contain old pkt data
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Part 3: Packet metadata one cache-line

● Shrink "skb" packet metadata structure
● Only one single cache-line "small"
● Linux skb is 4 cache-lines (on 64 bit)

● Common case no atomic refcnt
● DPDK have some support, but default off
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Part 3: No syscall overhead

● Direct userspace delivery
● NIC driver basically in userspace

● Does expose complexity and driver mem to user

● netmap does have a syscall to shield driver
● But amortize cost with packet bulking
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Part 3: No linked-lists

● Use faster data structures
● Specifically cache-line optimized data structures

● For each cache-line fetch, get several elements

● E.g. avoid using linked-lists
● Ideas from research on cache efficient data structures

● like: "An efficient unbounded Lock-free queue for Multi-core systems"
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Part 3: Example from DPDK

● Efficient data structure for FIFO queues
● (DPDK's based on FreeBSD's bufring.h)

● Lockless ring buffer, but uses cmpxchg ("LOCK" prefixed)
● Supports Multi/Single-Producer/Consumer combos.
● Cache-line effect amortize access cost
● Pipeline optimized bulk enqueue/dequeue

● Basically "just" an array of pointer used as a queue

● with pipeline optimized lockless access



Challenge: 10Gbit/s wirespeed and beyond27/33

Part 3: Numbers L2-switching

● Comparing Apples and Bananas?
● Out-of-tree bypass solution focus/report

● Layer2 “switch” performance numbers
● Switching basically only involves:

● Move page pointer from NIC RX ring to TX ring
● Linux bridge

● Involves:
● Full SKB alloc/free
● Several look ups
● Almost as much as L3 forwarding
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Part 4: Realistically goals

● What is realistically doable in our stack?
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Part 4: batching

● Introduce batching where it makes sense

Given time scale of performing action within critical region
● might be natural to process batch of packets

● Getting the API right is difficult
● Danger of introducing latency

● when "waiting" for another packet (before updating tail ptr)
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Part 4: Batching in qdisc layer

● Packet queueing (should) naturally occur in qdisc layer
● Playing with bulking, to find right API

● Qdisc layers "own" overhead
● can be the bottleneck, feeding driver fast-enough

● Testing: difficult to "overload" qdisc layer, single CPU
● Userspace tools min: syscall+alloc+free overhead
● Forwarding testing or pktgen into qdisc layer?
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Part 4: Faster mem alloc for SKB

● Memory Manager overhead
● Approx 80ns per SKB+data
● Can SLUB code be improved?

● Measure it!

● Play with mempool ideas
● Practical measurements will show
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Part 4: L2 forward plane

● Only realistically to compete
● at same level: Layer2 forwarding

● Linux problem
● Alloc full SKB for bridging/switching

● To compete:
● Needs a L2 forwarding plane/layer
● Architectural changes likely required
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The End

● Open discussion
● Do we need an architectural change?
● Where should we start? 

● We/Red Hat
● Will allocate resources/persons to project
● Open to collaborate
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