
Challenge: 10Gbit/s wirespeed and beyond1/33

Challenge 10Gbit/s
Wirespeed smallest frame

Single CPU core

Jesper Dangaard Brouer
Hannes Frederic Sowa

Daniel Borkmann
Florian Westphal

Network-Services-Team, Red Hat inc.

Netfilter Workshop, July 2014

Challenge: 10Gbit/s wirespeed and beyond2/33

Overview

● Part 1: Intro
● Understanding 10Gbit/s time budget

● Part 2: Measurements
● Where is the cost hiding in the Linux stack?

● Part 3: Tools of the trade used by others
● How did others manage this?

● Part 4: Realistically goals
● What is realistically doable in our stack?

Challenge: 10Gbit/s wirespeed and beyond3/33

Part 1: Faster alternatives

● Out-of-tree network stack bypass solutions
● Grown over recent years

● Like netmap, PF_RING/DNA, DPDK, PacketShader,
OpenOnload etc.

● Have shown kernel is not using HW optimally
● On same hardware platform

● They handle 10Gbit/s wirespeed smallest frame
● On a single CPU

Challenge: 10Gbit/s wirespeed and beyond4/33

Part 1: General purpose network platform

● Linux Kernel is best platform available
● For general purpose networking

● But needs to rethink its architecture
● To also better adapt for current/future high-end network

performance challenges

Challenge: 10Gbit/s wirespeed and beyond5/33

Part 1: Understand wirespeed challenge

● First step: Understand engineering challenge
● Of processing 10Gbit/s wirespeed

● At the smallest Ethernet frame size
● On a single CPU

● The peak packet rate is:
● 14.88 Mpps (million packets per sec)

● Uni-directional on 10Gbit/s with smallest frame size

Challenge: 10Gbit/s wirespeed and beyond6/33

Pert 1: What is the smallest Ethernet frame

● Ethernet specific (20 bytes)
● 12 bytes = inter-frame gap
● 8 bytes = MAC preamble

● Ethernet frame (64 bytes)
● 14 bytes = MAC header
● 46 bytes = Minimum payload size
● 4 bytes = Ethernet CRC

● Minimum size Ethernet frame is: 84 bytes (20 + 64)

https://en.wikipedia.org/wiki/Interpacket_gap

Challenge: 10Gbit/s wirespeed and beyond7/33

Packet Per Sec (pps) range

● PPS range of 10Gbit/s

● Peak packet rate: 14,880,952 pps
● calculated as: (10*10^9) bits/sec / (84 bytes * 8)

● 1500 MTU packet rate: 812,744 pps
● calculated as: (10*10^9) bits/sec / (1538 bytes * 8)

Challenge: 10Gbit/s wirespeed and beyond8/33

Part 1: IMPORTANT: Time budget

● Important part to wrap-your-head around
● 14.88 Mpps time budget

● For processing a single packet is:

● 67.2 ns (nanoseconds) (calc as: 1/14880952*10^9 ns)

● This correspond to approx:
● 201 CPU cycles on a 3GHz CPU

● This is a very small time/cycles budget!

Challenge: 10Gbit/s wirespeed and beyond9/33

Part 1: Understand: nanosec time scale

● Next: Important to understand time scale
● Need to relate this to other time measurements

● Next measurements done on
● Intel CPU E5-2630
● Unless explicitly stated otherwise

Challenge: 10Gbit/s wirespeed and beyond10/33

Time: cache-misses

● A single cache-miss takes: 32 ns
● Two misses: 2x32=64ns
● almost total 67.2 ns budget is gone

● Linux skb (sk_buff) is 4 cache-lines (on 64-bit)
● writes zeros to these cache-lines, during alloc.
● usually cache hot, so not full miss

Challenge: 10Gbit/s wirespeed and beyond11/33

Time: cache-references

● Usually not a full cache-miss
● memory usually available in L2 or L3 cache
● SKB usually hot, but likely in L2 or L3 cache.

● CPU E5-xx can map packets directly into L3 cache
● Intel calls this: Data Direct I/O (DDIO)

● Measured on E5-2630 (lmbench command "lat_mem_rd 1024 128")

● L2 access costs 4.3ns
● L3 access costs 7.9ns
● This is a usable time scale

Challenge: 10Gbit/s wirespeed and beyond12/33

Time: "LOCK" operation

● Assembler instructions "LOCK" prefix
● for atomic operations like locks/cmpxchg/atomic_inc
● some instructions implicit LOCK prefixed, like xchg

● Measured cost
● atomic "LOCK" operation costs 8.25ns

● Optimal spinlock usage lock+unlock (same single CPU)

● two LOCK calls costs 16.5ns

https://github.com/netoptimizer/network-testing/blob/master/src/overhead_cmpxchg.c

Challenge: 10Gbit/s wirespeed and beyond13/33

Time: System call overhead

● Userspace syscall overhead is large
● (Note measured on E5-2695v2)

● Default with SELINUX/audit-syscall: 75.34 ns
● Disabled audit-syscall: 41.85 ns

● Large chunk of 67.2ns budget
● Some syscalls already exists to amortize cost

● By sending several packet in a single syscall
● See: sendmmsg(2) and recvmmsg(2) notice the extra "m"
● See: sendfile(2) and writev(2)
● See: mmap(2) tricks and splice(2)

http://man7.org/linux/man-pages/man2/sendmmsg.2.html
http://man7.org/linux/man-pages/man2/recvmmsg.2.html
http://man7.org/linux/man-pages/man2/sendfile.2.html
http://man7.org/linux/man-pages/man2/writev.2.html
http://man7.org/linux/man-pages/man2/mmap.2.html
http://man7.org/linux/man-pages/man2/splice.2.html

Challenge: 10Gbit/s wirespeed and beyond14/33

Part 2: Measurement results

● Where is the cost hiding in the Linux stack?
● Can point us at hotspots
● But architectural changes are likely need

● For larger performance wins

● Next measurements done on
● Intel CPU E5-2630
● Unless explicitly stated otherwise

Challenge: 10Gbit/s wirespeed and beyond15/33

Part 2: Micro benchmark: kmem_cache

● Micro benchmarking code execution time
● kmem_cache with SLUB allocator

● Fast reuse of same element with SLUB allocator
● Hitting reuse, per CPU lockless fastpath
● kmem_cache_alloc+kmem_cache_free = 22.4ns

● Pattern of 128 alloc + 128 free (Based on ixgbe cleanup pattern)

● Cost increase to: 40.2ns
● The SKB data/page also have similar MM-cost

● Thus, approx 80ns alloc+free overhead

Challenge: 10Gbit/s wirespeed and beyond16/33

Part 2: Derived MM-cost via pktgen

● Hack: Implemented SKB recycling in pktgen
● But touch all usual data+skb areas, incl. zeroing

● Recycling only works for dummy0 device:
● No recycling: 3,301,677 pkts/sec = 303 ns
● With recycle: 4,424,828 pkts/sec = 226 ns

● Thus, the derived Memory Manager cost
● alloc+free overhead is (303 - 226): 77ns

Challenge: 10Gbit/s wirespeed and beyond17/33

Part 2: Memory Manager overhead

● SKB Memory Manager overhead
● kmem_cache: approx 80ns
● pktgen derived: 77ns
● Larger than our time budget: 67.2ns

● Thus, for our performance needs
● Either, MM area needs improvements
● Or need some alternative faster mempool

Challenge: 10Gbit/s wirespeed and beyond18/33

Part 2: Qdisc path overhead

● Optimal "fast-path" qdisc is empty, 6 LOCK ops
● LOCK cost on this arch: approx 8 ns
● 8 ns * 6 LOCK-ops = 48 ns pure lock overhead

● Measured qdisc overhead: between 58ns to 68ns
● 58ns: via trafgen –qdisc-path bypass feature
● 68ns: via ifconfig txlength 0 qdisc NULL hack

● Thus, using between 70-82% on LOCK ops
● Pure qdisc overhead

● As large as our 67.2 ns time budget

Challenge: 10Gbit/s wirespeed and beyond19/33

Part 2: HW level TX batching

● Batch packets into ixgbe drivers HW TX ring buffer
● update TDT (Transmit Descriptor Tail) every N packets

● Pktgen showed significant perf improvement
● Tuning pktgen to send 7Mpps (single CPU)
● Update TDT every 32 packets, result 11Mpps

● (2x=9Mpps, 4x9.6Mpps, 8x=10.5Mpps, 16x=10.9Mpps)

● Thus, ixgbe hardware level batching worth doing
● Solution that does not increase latency, hard part

Challenge: 10Gbit/s wirespeed and beyond20/33

Part 3: main tools of the trade

● Out-of-tree network stack bypass solutions
● Like netmap, PF_RING/DNA, DPDK, PacketShader,

OpenOnload, etc.

● How did others manage this in 67.2ns?
● General tools of the trade is:

● batching, preallocation, prefetching,
● staying cpu/numa local, avoid locking,
● shrink meta data to a minimum, reduce syscalls,
● faster cache-optimal data structures

Challenge: 10Gbit/s wirespeed and beyond21/33

Part 3: Batching is essential

● Challenge: Per packet processing cost overhead
● Do massive use of batching/bulking
● Working on batch of packets amortize cost

● General don't do locking, but easy example:
● e.g. locking per packet, cost 2*8ns=16ns

● Batch processing while holding lock, amortize cost
● Batch 16 packets amortized lock cost 1ns

Challenge: 10Gbit/s wirespeed and beyond22/33

Part 3: (Almost) no alloc/free memory cost

● Most fundamental difference:
● not trying to save memory

● Preallocate huge amounts of memory
● In huge-pages to avoid TLB lookups
● Removes cost of per packet dynamic memory alloc
● Free is simple, e.g mark “free” and return to mempool
● Never zero memory, can only contain old pkt data

Challenge: 10Gbit/s wirespeed and beyond23/33

Part 3: Packet metadata one cache-line

● Shrink "skb" packet metadata structure
● Only one single cache-line "small"
● Linux skb is 4 cache-lines (on 64 bit)

● Common case no atomic refcnt
● DPDK have some support, but default off

Challenge: 10Gbit/s wirespeed and beyond24/33

Part 3: No syscall overhead

● Direct userspace delivery
● NIC driver basically in userspace

● Does expose complexity and driver mem to user

● netmap does have a syscall to shield driver
● But amortize cost with packet bulking

Challenge: 10Gbit/s wirespeed and beyond25/33

Part 3: No linked-lists

● Use faster data structures
● Specifically cache-line optimized data structures

● For each cache-line fetch, get several elements

● E.g. avoid using linked-lists
● Ideas from research on cache efficient data structures

● like: "An efficient unbounded Lock-free queue for Multi-core systems"

Challenge: 10Gbit/s wirespeed and beyond26/33

Part 3: Example from DPDK

● Efficient data structure for FIFO queues
● (DPDK's based on FreeBSD's bufring.h)

● Lockless ring buffer, but uses cmpxchg ("LOCK" prefixed)
● Supports Multi/Single-Producer/Consumer combos.
● Cache-line effect amortize access cost
● Pipeline optimized bulk enqueue/dequeue

● Basically "just" an array of pointer used as a queue

● with pipeline optimized lockless access

Challenge: 10Gbit/s wirespeed and beyond27/33

Part 3: Numbers L2-switching

● Comparing Apples and Bananas?
● Out-of-tree bypass solution focus/report

● Layer2 “switch” performance numbers
● Switching basically only involves:

● Move page pointer from NIC RX ring to TX ring
● Linux bridge

● Involves:
● Full SKB alloc/free
● Several look ups
● Almost as much as L3 forwarding

Challenge: 10Gbit/s wirespeed and beyond28/33

Part 4: Realistically goals

● What is realistically doable in our stack?

Challenge: 10Gbit/s wirespeed and beyond29/33

Part 4: batching

● Introduce batching where it makes sense

Given time scale of performing action within critical region
● might be natural to process batch of packets

● Getting the API right is difficult
● Danger of introducing latency

● when "waiting" for another packet (before updating tail ptr)

Challenge: 10Gbit/s wirespeed and beyond30/33

Part 4: Batching in qdisc layer

● Packet queueing (should) naturally occur in qdisc layer
● Playing with bulking, to find right API

● Qdisc layers "own" overhead
● can be the bottleneck, feeding driver fast-enough

● Testing: difficult to "overload" qdisc layer, single CPU
● Userspace tools min: syscall+alloc+free overhead
● Forwarding testing or pktgen into qdisc layer?

Challenge: 10Gbit/s wirespeed and beyond31/33

Part 4: Faster mem alloc for SKB

● Memory Manager overhead
● Approx 80ns per SKB+data
● Can SLUB code be improved?

● Measure it!

● Play with mempool ideas
● Practical measurements will show

Challenge: 10Gbit/s wirespeed and beyond32/33

Part 4: L2 forward plane

● Only realistically to compete
● at same level: Layer2 forwarding

● Linux problem
● Alloc full SKB for bridging/switching

● To compete:
● Needs a L2 forwarding plane/layer
● Architectural changes likely required

Challenge: 10Gbit/s wirespeed and beyond33/33

The End

● Open discussion
● Do we need an architectural change?
● Where should we start?

● We/Red Hat
● Will allocate resources/persons to project
● Open to collaborate

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33

