
Bleeding edge Linux Kernel network stack development efforts1

Next steps for Linux Network stack

approaching 100Gbit/s

Jesper Dangaard Brouer
Principal Engineer, Red Hat

Netfilter Workshop, June 27, 2016

Bleeding edge Linux Kernel network stack development efforts2

Introduction

● Next steps for Linux Network stack
● Approaching 100Gbit/s HW speeds

● Software stack is under pressure!

● Disclaimer: This is my bleeding edge “plan”
● Most of this is not accepted upstream

● And might never be…!

● Challenging work ahead!
● Encourage people:

● Go solve these issue before me! ;-)

Bleeding edge Linux Kernel network stack development efforts3

Overview: Topics

● MM-bulk – more use-cases

● RX path – multi-fold solutions needed
● Drivers RX-ring prefetching
● RX bundles towards netstack
● Page-pool

● Make RX pages writable
● Revert DMA performance-tradeoff hacks

● TX xmit_more “powers” – not used in practice

● Qdisc – Redesign needed?

● XDP – eXpress Data Path

Bleeding edge Linux Kernel network stack development efforts4

MM-bulk: Status

● Status: upstream since kernel 4.6
● Bulk APIs for kmem_cache (SLAB+SLUB)

● Netstack use bulk free of SKBs in NAPI-context

● Generic kfree_bulk API
● Rejected: Netstack bulk alloc

● As number of RX packets were unknown

Bleeding edge Linux Kernel network stack development efforts5

MM-bulk: More use-cases

● Network stack – more use-cases
● Need explicit bulk free use from TCP stack

● NAPI bulk free, not active for TCP (keep ref too long)

● Use kfree_bulk() for skb→head
● (when allocated with kmalloc)

● Use bulk free API for qdisc delayed free
● RCU use-case

● Use kfree_bulk() API for delayed RCU free
● Other kernel subsystems?

Bleeding edge Linux Kernel network stack development efforts6

RX path: Missed driver opportunities

● NAPI already allow a level of RX bulking
● Drivers (usually) get 64 packet budget (by napi_poll)
● Drivers don't take advantage of bulk opportunity

● Missed RX opportunities:
● Drivers process RX-ring 1-packet at the time

● Call full network stack every time

● Cause:
● I-cache likely flushed, when returning to driver code
● Stall on cache-miss reading packet (ethertype)
● No knowledge about how many "ready" RX packets

Bleeding edge Linux Kernel network stack development efforts7

RX path: Early driver pre-RX-loop

● If RX ring contains multiple "ready" packets
● Means kernel was too slow (processing incoming packets)

● Thus, switch into more efficient mode (bulking)
● Dynamically scaling to load...

● Idea: Split driver RX-loop
● Introduce a pre-RX-loop for counting and prefetching

● Purpose of driver pre-RX loop
● Knowing number of packets: allow bulk alloc of SKBs
● Prefetching to hide cache-miss

Bleeding edge Linux Kernel network stack development efforts8

RX path: DDIO technology

● Intel Data Direct I/O Technology (DDIO)
● HW essentially deliver packet data in L3-cache
● Only avail on high-end E5-based servers

● Driver pre-RX loop
● Prefetch part: simplified software version of DDIO

● Still benefit for DDIO CPUs
● Bulk alloc of SKBs, saving
● (Only) hide L3->L1 cache miss
● Better I-cache usage in driver-code

Bleeding edge Linux Kernel network stack development efforts9

RX path: RX bulking to netstack

● More controversial to deliver a "bundle" to netstack
● (Driver pre-RX loop is contained inside driver)
● Split of Driver and netstack code, optimize/split I-cache usage

● RFC proposal by Edward Cree
● Drivers simply queue RX pkts on SKB list (no-prefetch RX loop)

● Results very good:

● First step, 10.2% improvement (simply loop in netstack)
● Full approach, 25.6% improvement (list'ify upto ip_rcv)

● Interesting, but upstream was not ready for this step

● More opportunities when netstack know bundle size
● E.g. caching lookups, flush/free when bundle ends

http://thread.gmane.org/gmane.linux.network/408780

Bleeding edge Linux Kernel network stack development efforts10

RX-path: Issue RX page are read-only

● Most drivers have read-only RX pages
● Cause more expensive SKB setup

1) Alloc separate writable mem area

2) Copy over RX packet headers

3) Store skb_shared_info in writable-area

4) Setup pointers and offsets, into RX page-"frag"

● Reason: Performance trade off

A)Page allocator is too slow

B)DMA-API expensive on some platforms (with IOMMU)
● Hack: alloc and DMA map larger pages, and “chop-up” page
● Side-effect: read-only RX page-frames

● Due to unpredictable DMA unmap time

Bleeding edge Linux Kernel network stack development efforts11

RX-path: Make RX pages writable

● Need to make RX pages writable
● This implicit what Eric Dumazet means when saying:

 "Drivers should use build_skb()"
● My solution is the page-pool

● Address:
● Page-allocator speed

● As a specialized allocator require less checks
● DMA IOMMU mapping cost

● Keeping page mapped
● Make writable

● By predictable DMA unmap point

Bleeding edge Linux Kernel network stack development efforts12

Page-pool: Design

● Idea presented at MM-summit April 2016

● Basic ideas for a page-pool
● Pages are recycled back into originating pool

● Creates a feedback loop, helps limit pages in pool

● Drivers still need to handle dma_sync part
● Page-pool handle dma_map/unmap

● essentially: constructor and destructor calls

● Page free/return to page-pool, Either:

1) SKB free knows and call page pool free, or

2) put_page() handle via page flag

http://people.netfilter.org/hawk/presentations/MM-summit2016/generic_page_pool_mm_summit2016.pdf

Bleeding edge Linux Kernel network stack development efforts13

Page-pool: opportunity – feedback loop

● Today: Unbounded RX page allocations by drivers
● Can cause OOM (Out-of-Memory) situations
● Handled via skb->truesize and queue limits

● Page pool provides a feedback loop
● (Given pages are recycles back to originating pool)

● Allow bounding pages/memory allowed per RXq
● Simple solution: configure fixed memory limit
● Advanced solution, track steady-state

● Can function as a “Circuit Breaker” (See RFC draft link)

https://tools.ietf.org/html/draft-ietf-tsvwg-circuit-breaker-15

Bleeding edge Linux Kernel network stack development efforts14

TX powers – background

● Solved TX bottleneck with xmit_more API
● See: http://netoptimizer.blogspot.dk/2014/10/unlocked-10gbps-tx-wirespeed-smallest.html

● 10G wirespeed: Pktgen 14.8Mpps single core
● Spinning same SKB (no mem allocs)

● Primary trick: Bulk packet (descriptors) to HW
● Delays HW NIC tailptr write

● Activated via Qdisc bulk dequeue
● Issue: hard to “activate”

http://netoptimizer.blogspot.dk/2014/10/unlocked-10gbps-tx-wirespeed-smallest.html

Bleeding edge Linux Kernel network stack development efforts15

TX powers – performance gain

● Only artificial benchmarks realize gain
● like pktgen

● How big is the difference?
● with pktgen, ixgbe, single core E5-2630 @2.30GHz

● TX 2.9 Mpps (clone_skb 0, burst 0) (343 nanosec)

↑ Alloc+free SKB+page on for every packet

● TX 6.6 Mpps (clone_skb 10000) (151 nanosec)

↑ x2 performance: Reuse same SKB 10000 times

● TX 13.4 Mpps (pktgen burst 32) (74 nanosec)

↑ x2 performance: Use xmit_more with 32 packet bursts
● Faster CPU can reach wirespeed 14.8 Mpps (single core)

Bleeding edge Linux Kernel network stack development efforts16

TX powers – Issue

● Only realized for artificial benchmarks, like pktgen

● Issue: For practical use-cases
● Very hard to "activate" qdisc bulk dequeue

● Qdisc supporting bulk dequeue (were) limited
● Eric Dumazet very recently extended to more Qdisc's

● Need to hit HW bandwidth limit to “kick-in”
● Seen TCP hit BW limit, result lower CPU utilization
● Want to realized gain earlier.

● Next-step: bulk enqueue

Bleeding edge Linux Kernel network stack development efforts17

Qdisc: layer issues

● Issues with qdisc layer
● Too many (6) lock operations

● even for the empty queue case!

● Bulk TX xmit_more "powers" hard to utilize
● Bulk enqueue could mitigate situation

● Enqueue and dequeue block each-other
● Enqueue'ers starve the single dequeuer
● "strange" heuristic for avoiding enqueue to starve dequeue

● Thanks: Other people are looking at this area
● Eric Dumazet, Florian Westphal and John Fastabend

Bleeding edge Linux Kernel network stack development efforts18

Qdisc: Time to redesign qdisc layer?

● Interesting solution in article:
● "A Fast and Practical Software Packet Scheduling Architecture"

● By: Luigi Rizzo <rizzo@iet.unipi.it>

● Main take-way: “arbiter” serialize enqueue+dequeue step

● packets are "submitted" in parallel (lockless queues)
● arbiter scans queues, and preform enqueue step

● Linux already have single dequeue process "scheme"

● Could take role of arbiter
● If submitter/enqueue see qdisc_is_running()

● store packet in intermediate lockless queue
● arbiter/dequeue will guarantee to pickup fast, call enqueue()

http://info.iet.unipi.it/~luigi/papers/20160511-mysched-preprint.pdf
mailto:rizzo@iet.unipi.it

Bleeding edge Linux Kernel network stack development efforts19

XDP: eXpress Data Path

● An eXpress Data Path (XDP) in kernel-space
● The "packet-page" idea from NetDev1.1 "rebranded"
● Thanks to: Tom Herbert, Alexei and Brenden Blanco,

putting effort behind idea
● Performance is primary focus and concern

● Need features: use normal stack delivery

● Very exciting: Allow comparison against DPDK
● Same lower level handling as DPDK
● Allow comparing "apples-to-apples"

https://github.com/iovisor/bpf-docs/blob/master/Express_Data_Path.pdf

Bleeding edge Linux Kernel network stack development efforts20

XDP: What is it?

● Thin layer at lowest levels of SW network stack
● Before allocating SKBs
● Inside device drivers RX function
● Operate directly on RX packet-pages

● XDP is NOT kernel bypass
● Designed to work in concert with stack

● XDP - run-time programmability via "hook"
● Current proposal: run eBPF program at hook point
● Could run modified nftables

● if removing SKB dependency
● and agree on "return-action-code" API

Bleeding edge Linux Kernel network stack development efforts21

XDP: Stages

● Project still young
● First XDP-summit held last week (June 23)

● Phases of the project:
● 1) Fast DDoS filter [achievable]
● 2) One-legged load-balance/forwarding

● in-out-same-NIC [doable]

● 3) More generic forwarding [challenging]
● 4) RAW packet dump (steal packets) [challenging]

Bleeding edge Linux Kernel network stack development efforts22

XDP: Performance evaluation

● Prove of concept code by Brenden

● Evaluated on Mellanox 40Gbit/s NICs (mlx4)
● Single CPU (with DDIO) performance

● 20 Mpps – Filter drop all
● 12 Mpps – TX-bounce forward (TX bulking)
● 10 Mpps – TX-bounce with udp+mac rewrite

● Single CPU without DDIO (cache-misses)
● TX-bounce with udp+mac rewrite:

● 8.5Mpps – cache-miss
● 12.3Mpps – RX prefetch loop trick

● Page allocator is now primary bottleneck
● Page-pool should remove that bottleneck

Bleeding edge Linux Kernel network stack development efforts23

The end

● Exciting times for network performance!
● Evaluation show XDP will be as fast as DPDK

Bleeding edge Linux Kernel network stack development efforts24

EXTRA SLIDES

Bleeding edge Linux Kernel network stack development efforts25

RPS – Bulk enqueue to remote CPU

● RPS = Recv Packet Steering
● Software balancing of flows (to/across CPUs)

● Current RPS
● Remote CPUs does bulk/list-splice “dequeue”
● RX CPU does single packet “enqueue”

● Experiment (Prove-of-concept code)
● 4 Mpps RX limit hit with RPS
● 9Mpps doing bulk “enqueue” (flush when NAPI ends)

● The “dequeue” CPU can still only handle 4 Mpps

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25

