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Overview: Topics

● What is XDP – eXpress Data Path

● What is the proposed use-cases

● What can you imagine using this for?
● No, this is not for every use-case!
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Introduction

● An eXpress Data Path (XDP) in kernel-space
● The "packet-page" idea from NetDev1.1 "rebranded"
● Thanks to: Tom Herbert, Alexei and Brenden Blanco, putting effort behind idea

● Performance is primary focus and concern
● Target is competing with DPDK
● No fancy features!

● Need features: use normal stack delivery

● Disclaimer: This is my bleeding edge “plan”
● Most of this is not accepted upstream

● And might never be…!

https://github.com/iovisor/bpf-docs/blob/master/Express_Data_Path.pdf
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XDP: What is XDP (eXpress Data Path)?

● Thin layer at lowest levels of SW network stack
● Before allocating SKBs
● Inside device drivers RX function
● Operate directly on RX packet-pages

● XDP is NOT kernel bypass
● Designed to work in concert with stack

● XDP - run-time programmability via "hook"
● Run eBPF program at hook point
● Do you know what eBPF is?

● User-defined, sandboxed bytecode executed by the kernel

https://lkml.org/lkml/2015/4/14/232
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XDP: data-plane responsibility “split”

● (Note: This is my personal abstract view of XDP)

● Split between kernel and eBPF
● Kernel: fabric in charge of moving packets quickly
● eBPF: logic decide action + read/write packet
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XDP: Young project

● Project still young
● First XDP-summit held June 23 (2016)

● XDP patchset V10 accepted Juli 20 (2016)
● Basic infrastructure

● Only implemented for one driver: mlx4
● HW: ConnectX3-pro runs 10/40GbE

● Will appear in kernel 4.8

http://thread.gmane.org/gmane.linux.network/422285
http://www.mellanox.com/page/products_dyn?product_family=162&mtag=connectx_3_pro_en_card
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XDP: Performance evaluation, crazy fast!!!

● Evaluated on Mellanox 40Gbit/s NICs (mlx4)
● Single CPU with DDIO performance

● 20 Mpps – Filter drop all (but read/touch data)
● 12 Mpps – TX-bounce forward (TX bulking)
● 10 Mpps – TX-bounce with udp+mac rewrite

● Single CPU without DDIO (cache-misses)
● TX-bounce with udp+mac rewrite:

● 8.5Mpps – cache-miss
● 12.3Mpps – RX prefetch loop trick

● RX cache prefetch loop trick: 20 Mpps XDP_DROP
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XDP: Packet based

● Packet based decision
● (Currently) cannot store/propagate meta per packet
● eBPF program can build arbitrary internal state 

(maps/hashes)
● Got write access to raw packet

● Use-cases for modifying packets:
● Add or pop encapsulation headers
● Rewrite packet headers for forwarding/bouncing
● Others?
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XDP: Disclaimer

● Enabling XDP changes (RX ring) memory model
● Needed to get write access to packet
● Needed for fast drop (simple RX ring recycling)
● Waste memory: Always alloc 4K (page) per RX packet

● Cause performance regression
● When delivering packets to normal network stack
● Due to bottleneck in page allocator

● Working on page_pool project to remove this bottleneck
● PoC code shows, faster than before!

● Memory model waste can affect TCP throughput
● Due to affecting skb->truesize
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XDP: (FUTURE) per RX queue

● Current implementation
● Same/single XDP program runs on ALL RX queues

● Plan: per RX queue attaching XDP programs
● Use HW filters to direct traffic to RX queues

● Advantages:
● More flexible, don’t “take” entire NIC
● Can avoid changing memory model for all RX rings

● Thus avoid performance regressions

● Simpler XDP programs, with NIC HW filters
● Less parsing of traffic as type is given by HW filter
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XDP - actions

● Currently only implement 3 basic action

1) XDP_PASS:
●  Pass into normal network stack (could be modified)

2) XDP_DROP:
●  Very fast drop (recycle page in driver)

3) XDP_TX:
● Forward or TX-bounce back-out same interface

● I personally find "TX-bounce" very limiting
● Cannot implement the DPDK router example
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XDP - future actions

● XDP future actions:
● XDP_FWD: Multi-port forwarding

● Tricky settling on howto desc and return egress port  
● Depend on raw frame TX infrastructure in drivers

● Getting lot of push-back upstream (strange!)
● XDP capture to userspace (steal packet mode)

● Faster tcpdump/RAW packets to userspace
● Doable with a single copy
● Zero-copy RX is tricky

● Only possible with a combination of (1) dedicated RX HW 
rings, (2) HW filters, (3) separate page_pool recycling, and 
(4) premapping pages to userspace.
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XDP port abstraction table proposal (FUTURE)

● Proposal for generalizing multi-port forwarding
● How does eBPF “say” what egress “port” to use?
● Bad approach: Tying a port to the netdev ifindex

● Too Linux specific (Tom Herbert)
● Limit the type of egress ports to be a netdev
● XDP prog cannot be limited “allowed” set of ports

● XDP port abstraction table
● Simply a “port” index lookup table

● For “type” netdev: maps to ifindex (or net_device ptr)
● For every “type” a new TX infrastructure needed
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XDP use-cases

● Use-cases:
● DDoS filtering
● DDoS scrubbing box
● Forwarding and load-balancing
● Tunneling: encap/decap header handling
● Sampling and monitoring tools
● Faster packet dump (must steal packet)
● Invent your own….?!

● XDP infrastructure should support innovation
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XDP: DDoS use-case

● First (obvious) use-case is DDoS filtering
● Based on CloudFlares DNS/UDP filter (netdev 1.1)

● CloudFlare does kernel bypass
● Single RX queue bypass into Netmap
● Userspace (BPF) filter drop bad packets
● Reinject good packets

● XDP can avoid reinject step
● parse packet "inline" with eBPF
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XDP: Types of DDoS

● DDoS filtering types:
● Best suited for packet based filter decisions (L2 or L3)
● eBPF could store historic state

● Arbitrary advanced based on eBPF expressiveness

● Use another tool for application layer attacks
● Really fast!

● Realize: Can do wirespeed filtering of small packets
● Fast enough for?

● Filtering DoS volume attacks on network edge?
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XDP use-case: Load-balancing

● Facebook’s use-case:
●  One-legged load-balancing

● Load-balancer without central LB-machine
● Every machine (in cluster) is a load-balancer

● If packet is not for localhost, XDP_TX forward to server 
responsible for terminating traffic.

● Same principle for: ILA-router
● Based on IPv6 addr “split”

● Identifier-Locator Addressing (ILA) for network virtualization

● Combine with Tunnel headers decap/encap
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XDP use-case: Router

● Implement a router/forwarding data plane in eBPF
● This is the DPDK prime example

● Depends on Multi-port TX (not implemented yet)
● Need consistent design of

● How to represent egress devices/ports?
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XDP use-case: L2 learning bridge

● Assuming 
● Multi-port TX have been implemented

● With port design accessible across XDP programs

● Natural step: L2 learning bridge
● Connect/attach to bridge

● Register (ingress) port + Load eBPF program

● Flexibility of port design
● Determine types of ports that can be attached

● Ingress traffic builds FIB (Forward Information Base)

● FIB lookup table is eBPF shared with a bpf-map.
● Need kernel-side extension: Flood/broadcast on all ports



XDP – eXpress Data Path20/23

What are your XDP use-cases?

● Discuss what XDP could be used for?
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XDP use-case: Bridge + Virtual machines

● Use-case: delivery into virtual machines (VM)
● Depend on extending e.g. vhost-net with XDP 

compatible xmit function
● Combine L2-bridge with VM ports

● L2-bridge is a known technology
● VMs have a way of communicating
● and discovery of each-other

● (eBPF could do arbitrary matching of VM)
● save that idea for another time...
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Status: Linux perf improvements

● Linux performance, recent improvements
●  approx past 2 years:

● Lowest TX layer (single core, pktgen):
● Started at: 4 Mpps → 14.8 Mpps (← max 10G wirespeed)

● Lowest RX layer (single core):
● Started at: 6.4 Mpps → 12 Mpps (still experimental)

● XDP: drop 20Mpps (looks like HW limit)

● IPv4-forwarding
● Single core: 1 Mpps → 2 Mpps → (experiment) 2.5Mpps 
● Multi core : 6 Mpps → 12 Mpps (RHEL7.2 benchmark)

● XDP single core TX-bounce fwd: 10Mpps
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The end

● Exciting times for network performance!
● Evaluation show XDP will be as fast as DPDK
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EXTRA SLIDES
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Page-pool: Design

● Idea presented at MM-summit April 2016

● Basic ideas for a page-pool
● Pages are recycled back into originating pool

● Creates a feedback loop, helps limit pages in pool

● Drivers still need to handle dma_sync part
● Page-pool handle dma_map/unmap

● essentially: constructor and destructor calls

● Page free/return to page-pool, Either:

1) SKB free knows and call page pool free, or

2) put_page() handle via page flag

http://people.netfilter.org/hawk/presentations/MM-summit2016/generic_page_pool_mm_summit2016.pdf
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Page-pool: opportunity – feedback loop

● Today: Unbounded RX page allocations by drivers
● Can cause OOM (Out-of-Memory) situations
● Handled via skb->truesize and queue limits

● Page pool provides a feedback loop
● (Given pages are recycles back to originating pool)

● Allow bounding pages/memory allowed per RXq
● Simple solution: configure fixed memory limit
● Advanced solution, track steady-state

● Can function as a “Circuit Breaker” (See RFC draft link)

https://tools.ietf.org/html/draft-ietf-tsvwg-circuit-breaker-15
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RPS – Bulk enqueue to remote CPU

● RPS = Recv Packet Steering
● Software balancing of flows (to/across CPUs)

● Current RPS
● Remote CPUs does bulk/list-splice “dequeue”
● RX CPU does single packet “enqueue”

● Experiment (Prove-of-concept code)
● 4 Mpps RX limit hit with RPS
● 9Mpps doing bulk “enqueue” (flush when NAPI ends)

● The “dequeue” CPU can still only handle 4 Mpps
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