
XDP – eXpress Data Path1/23

XDP – eXpress Data Path
Intro and future use-cases

Linux Kernel’s fight against DPDK

Jesper Dangaard Brouer
Principal Engineer, Red Hat

Visiting One.com
Sep, 2016

XDP – eXpress Data Path2/23

Overview: Topics

● What is XDP – eXpress Data Path

● What is the proposed use-cases

● What can you imagine using this for?
● No, this is not for every use-case!

XDP – eXpress Data Path3/23

Introduction

● An eXpress Data Path (XDP) in kernel-space
● The "packet-page" idea from NetDev1.1 "rebranded"
● Thanks to: Tom Herbert, Alexei and Brenden Blanco, putting effort behind idea

● Performance is primary focus and concern
● Target is competing with DPDK
● No fancy features!

● Need features: use normal stack delivery

● Disclaimer: This is my bleeding edge “plan”
● Most of this is not accepted upstream

● And might never be…!

https://github.com/iovisor/bpf-docs/blob/master/Express_Data_Path.pdf

XDP – eXpress Data Path4/23

XDP: What is XDP (eXpress Data Path)?

● Thin layer at lowest levels of SW network stack
● Before allocating SKBs
● Inside device drivers RX function
● Operate directly on RX packet-pages

● XDP is NOT kernel bypass
● Designed to work in concert with stack

● XDP - run-time programmability via "hook"
● Run eBPF program at hook point
● Do you know what eBPF is?

● User-defined, sandboxed bytecode executed by the kernel

https://lkml.org/lkml/2015/4/14/232

XDP – eXpress Data Path5/23

XDP: data-plane responsibility “split”

● (Note: This is my personal abstract view of XDP)

● Split between kernel and eBPF
● Kernel: fabric in charge of moving packets quickly
● eBPF: logic decide action + read/write packet

XDP – eXpress Data Path6/23

XDP: Young project

● Project still young
● First XDP-summit held June 23 (2016)

● XDP patchset V10 accepted Juli 20 (2016)
● Basic infrastructure

● Only implemented for one driver: mlx4
● HW: ConnectX3-pro runs 10/40GbE

● Will appear in kernel 4.8

http://thread.gmane.org/gmane.linux.network/422285
http://www.mellanox.com/page/products_dyn?product_family=162&mtag=connectx_3_pro_en_card

XDP – eXpress Data Path7/23

XDP: Performance evaluation, crazy fast!!!

● Evaluated on Mellanox 40Gbit/s NICs (mlx4)
● Single CPU with DDIO performance

● 20 Mpps – Filter drop all (but read/touch data)
● 12 Mpps – TX-bounce forward (TX bulking)
● 10 Mpps – TX-bounce with udp+mac rewrite

● Single CPU without DDIO (cache-misses)
● TX-bounce with udp+mac rewrite:

● 8.5Mpps – cache-miss
● 12.3Mpps – RX prefetch loop trick

● RX cache prefetch loop trick: 20 Mpps XDP_DROP

XDP – eXpress Data Path8/23

XDP: Packet based

● Packet based decision
● (Currently) cannot store/propagate meta per packet
● eBPF program can build arbitrary internal state

(maps/hashes)
● Got write access to raw packet

● Use-cases for modifying packets:
● Add or pop encapsulation headers
● Rewrite packet headers for forwarding/bouncing
● Others?

XDP – eXpress Data Path9/23

XDP: Disclaimer

● Enabling XDP changes (RX ring) memory model
● Needed to get write access to packet
● Needed for fast drop (simple RX ring recycling)
● Waste memory: Always alloc 4K (page) per RX packet

● Cause performance regression
● When delivering packets to normal network stack
● Due to bottleneck in page allocator

● Working on page_pool project to remove this bottleneck
● PoC code shows, faster than before!

● Memory model waste can affect TCP throughput
● Due to affecting skb->truesize

XDP – eXpress Data Path10/23

XDP: (FUTURE) per RX queue

● Current implementation
● Same/single XDP program runs on ALL RX queues

● Plan: per RX queue attaching XDP programs
● Use HW filters to direct traffic to RX queues

● Advantages:
● More flexible, don’t “take” entire NIC
● Can avoid changing memory model for all RX rings

● Thus avoid performance regressions

● Simpler XDP programs, with NIC HW filters
● Less parsing of traffic as type is given by HW filter

XDP – eXpress Data Path11/23

XDP - actions

● Currently only implement 3 basic action

1) XDP_PASS:
● Pass into normal network stack (could be modified)

2) XDP_DROP:
● Very fast drop (recycle page in driver)

3) XDP_TX:
● Forward or TX-bounce back-out same interface

● I personally find "TX-bounce" very limiting
● Cannot implement the DPDK router example

XDP – eXpress Data Path12/23

XDP - future actions

● XDP future actions:
● XDP_FWD: Multi-port forwarding

● Tricky settling on howto desc and return egress port
● Depend on raw frame TX infrastructure in drivers

● Getting lot of push-back upstream (strange!)
● XDP capture to userspace (steal packet mode)

● Faster tcpdump/RAW packets to userspace
● Doable with a single copy
● Zero-copy RX is tricky

● Only possible with a combination of (1) dedicated RX HW
rings, (2) HW filters, (3) separate page_pool recycling, and
(4) premapping pages to userspace.

XDP – eXpress Data Path13/23

XDP port abstraction table proposal (FUTURE)

● Proposal for generalizing multi-port forwarding
● How does eBPF “say” what egress “port” to use?
● Bad approach: Tying a port to the netdev ifindex

● Too Linux specific (Tom Herbert)
● Limit the type of egress ports to be a netdev
● XDP prog cannot be limited “allowed” set of ports

● XDP port abstraction table
● Simply a “port” index lookup table

● For “type” netdev: maps to ifindex (or net_device ptr)
● For every “type” a new TX infrastructure needed

XDP – eXpress Data Path14/23

XDP use-cases

● Use-cases:
● DDoS filtering
● DDoS scrubbing box
● Forwarding and load-balancing
● Tunneling: encap/decap header handling
● Sampling and monitoring tools
● Faster packet dump (must steal packet)
● Invent your own….?!

● XDP infrastructure should support innovation

XDP – eXpress Data Path15/23

XDP: DDoS use-case

● First (obvious) use-case is DDoS filtering
● Based on CloudFlares DNS/UDP filter (netdev 1.1)

● CloudFlare does kernel bypass
● Single RX queue bypass into Netmap
● Userspace (BPF) filter drop bad packets
● Reinject good packets

● XDP can avoid reinject step
● parse packet "inline" with eBPF

XDP – eXpress Data Path16/23

XDP: Types of DDoS

● DDoS filtering types:
● Best suited for packet based filter decisions (L2 or L3)
● eBPF could store historic state

● Arbitrary advanced based on eBPF expressiveness

● Use another tool for application layer attacks
● Really fast!

● Realize: Can do wirespeed filtering of small packets
● Fast enough for?

● Filtering DoS volume attacks on network edge?

XDP – eXpress Data Path17/23

XDP use-case: Load-balancing

● Facebook’s use-case:
● One-legged load-balancing

● Load-balancer without central LB-machine
● Every machine (in cluster) is a load-balancer

● If packet is not for localhost, XDP_TX forward to server
responsible for terminating traffic.

● Same principle for: ILA-router
● Based on IPv6 addr “split”

● Identifier-Locator Addressing (ILA) for network virtualization

● Combine with Tunnel headers decap/encap

XDP – eXpress Data Path18/23

XDP use-case: Router

● Implement a router/forwarding data plane in eBPF
● This is the DPDK prime example

● Depends on Multi-port TX (not implemented yet)
● Need consistent design of

● How to represent egress devices/ports?

XDP – eXpress Data Path19/23

XDP use-case: L2 learning bridge

● Assuming
● Multi-port TX have been implemented

● With port design accessible across XDP programs

● Natural step: L2 learning bridge
● Connect/attach to bridge

● Register (ingress) port + Load eBPF program

● Flexibility of port design
● Determine types of ports that can be attached

● Ingress traffic builds FIB (Forward Information Base)

● FIB lookup table is eBPF shared with a bpf-map.
● Need kernel-side extension: Flood/broadcast on all ports

XDP – eXpress Data Path20/23

What are your XDP use-cases?

● Discuss what XDP could be used for?

XDP – eXpress Data Path21/23

XDP use-case: Bridge + Virtual machines

● Use-case: delivery into virtual machines (VM)
● Depend on extending e.g. vhost-net with XDP

compatible xmit function
● Combine L2-bridge with VM ports

● L2-bridge is a known technology
● VMs have a way of communicating
● and discovery of each-other

● (eBPF could do arbitrary matching of VM)
● save that idea for another time...

XDP – eXpress Data Path22/23

Status: Linux perf improvements

● Linux performance, recent improvements
● approx past 2 years:

● Lowest TX layer (single core, pktgen):
● Started at: 4 Mpps → 14.8 Mpps (← max 10G wirespeed)

● Lowest RX layer (single core):
● Started at: 6.4 Mpps → 12 Mpps (still experimental)

● XDP: drop 20Mpps (looks like HW limit)

● IPv4-forwarding
● Single core: 1 Mpps → 2 Mpps → (experiment) 2.5Mpps
● Multi core : 6 Mpps → 12 Mpps (RHEL7.2 benchmark)

● XDP single core TX-bounce fwd: 10Mpps

XDP – eXpress Data Path23/23

The end

● Exciting times for network performance!
● Evaluation show XDP will be as fast as DPDK

XDP – eXpress Data Path24/23

EXTRA SLIDES

XDP – eXpress Data Path25/23

Page-pool: Design

● Idea presented at MM-summit April 2016

● Basic ideas for a page-pool
● Pages are recycled back into originating pool

● Creates a feedback loop, helps limit pages in pool

● Drivers still need to handle dma_sync part
● Page-pool handle dma_map/unmap

● essentially: constructor and destructor calls

● Page free/return to page-pool, Either:

1) SKB free knows and call page pool free, or

2) put_page() handle via page flag

http://people.netfilter.org/hawk/presentations/MM-summit2016/generic_page_pool_mm_summit2016.pdf

XDP – eXpress Data Path26/23

Page-pool: opportunity – feedback loop

● Today: Unbounded RX page allocations by drivers
● Can cause OOM (Out-of-Memory) situations
● Handled via skb->truesize and queue limits

● Page pool provides a feedback loop
● (Given pages are recycles back to originating pool)

● Allow bounding pages/memory allowed per RXq
● Simple solution: configure fixed memory limit
● Advanced solution, track steady-state

● Can function as a “Circuit Breaker” (See RFC draft link)

https://tools.ietf.org/html/draft-ietf-tsvwg-circuit-breaker-15

XDP – eXpress Data Path27/23

RPS – Bulk enqueue to remote CPU

● RPS = Recv Packet Steering
● Software balancing of flows (to/across CPUs)

● Current RPS
● Remote CPUs does bulk/list-splice “dequeue”
● RX CPU does single packet “enqueue”

● Experiment (Prove-of-concept code)
● 4 Mpps RX limit hit with RPS
● 9Mpps doing bulk “enqueue” (flush when NAPI ends)

● The “dequeue” CPU can still only handle 4 Mpps

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27

