
1

Netfilter Failover

Connection Tracking State Replication

Krisztián Kovács <hidden@sch.bme.hu>
2003.08.17



2

Original idea

● Harald's OLS 2002 paper: “How To 
Replicate The Fire – HA For Netfilter 
Based Firewalls”

● The problem: Netfilter is a stateful 
packet filter, we have to replicate the
– conntrack entries

– NAT data



3

Network architecture



4

Cluster interface and internals

● Master-slave system
● Cluster is reachable through a virtual IP, 

packets sent to this IP are processed by 
the master

● An internal replication network is 
available (high-speed, secure, etc.)

● All nodes have the same configuration
● Two (almost) separate problems to solve:

– IP failover
– State replication



5

IP failover

● Don't reinvent the wheel: use VRRP 
(Virtual Router Redundancy Protocol)

● Provides:
– master election protocol
– virtual IP configuration on all interfaces

● VRRP implementation: keepalived 
daemon originally developed for LVS

● We need to be able to get notified when 
state changes occur: this is possible with 
keepalived



6

State replication

● Two roles: master and slave
– Master generates replication protocol 

messages from conntrack events

– Slave listens for these messages and updates 
the conntrack entries accordingly



7

ct_sync architecture



8

ct_sync implementation



9

Problems

● Dynamic structures (linked lists, 
pointers)
– Data structures have to be serialized

● Cluster-level unique IDs are needed 
instead of pointers
– Harald's approach: since the address of the 

ip_conntrack structure does not change, use 
that as an ID

– This is not correct: when failover happens, 
the addresses change (they are not 
guaranteed to be the same on the slaves!)



10

Problems

● Refresh and timers
– Refresh events occur too often, so they 

cannot be replicated

– This causes inconsistency: if the timers are 
not refreshed on the slaves, conntrack 
entries may timeout too early

– Because of this, timers are not activated on 
slaves, they are initialized at creation, and 
started only if a slave->master transition 
occurs



11

Replication protocol

● Protocol messages must not be tracked
– NOTRACK should be used

● Multicast UDP based
● NACK (Negative ACKnowledgement) 

based error recovery
– Each packet has a sequence number, master 

 has the last N packets sent in memory

– If a slave detects that the received packet 
has an invalid sequence number, it requests 
retransmission



12

Error recovery

● Every packet sent by the master contains 
the sequence number of the oldest 
packet which can be retransmitted
– Slaves can detect some cases when recovery 

is trivially impossible

● Retransmission request suppression
● The protocol is very stupid

– Not scalable: a few missing packets cause 
retransmission “storms” (slaves do not store 
packets with too recent sequence numbers)



13

Protocol messages

● Message grouping is not implemented 
yet... :(



14

Protocol messages

● Every message is self-contained (not 
incremental): contains every information 
about a given conntrack entry or 
expectation 

● update/delete messages for conntrack 
entries/expectations



15

Configuration

● Module parameters
– Initial node status (master/slave)

– Node ID

– Replication interface name

● procfs entries
– Change node status based on keepalived 

events



16

Test system



17

Future work I.

● Complete rewrite and cleanup :) (for a 
new and stable ctnetlink, maybe...)

● Better (scalable, more intelligent) 
replication protocol
– Should it be architecture and version 

independent?
– Message grouping: more messages in one 

packet



18

Future work II.

● Full resynchronization
– Maintenance of the cluster is really hard 

without it

– Retransmission of the whole conntrack 
table is impossible (slow, locks up master)

– Possible solution: transmission of fake 
update messages (eg. for unchanged 
entries) when master is idle



19

Future work III.

● Real testing
– Due to lack of hardware, I was unable to test 

the system on real HW

– UML was used throughout the development 
and testing

– In its current state it's not architecture 
independent



20

Open problems

● Is a userspace solution based on 
ctnetlink feasible? (With performance in 
mind)

● Load balancing instead of failover


