

Fastpath for IPSec gateways using
the flowtable infrastructure

Pablo Neira Ayuso
<pablo@netfilter.org>

IPSec Workshop
Prague, Czechia

mailto:pablo@netfilter.org

Flowtable bypass

Flowtable bypass (2)

● For each packet, extract tuple and perform look up at the flowtable.
● Miss: Let the packet follow the classic forwarding path.
● Hit:

– Attach route from flowtable entry (… flowtable is acting as a cache).
– NAT mangling, if any.
– Decrement TTL.
– Send packet via neigh_xmit(...).

● Exceptions (any of them, forces slow path):
– If packet is over MTU, pass it up to classic forwarding path.
– Secpath info is available.
– IP Options available.

● Garbage collector:
– Expire flows if we see no more packets after N seconds.

– TCP reset and fin packets are passed up to slow path.

Flowtable bypass (3)

● Configure flow bypass through one single rule:
table ip x {
 flowtable f {
 hook ingress priority 0; devices = { eth0, eth1};
 }

chain y {
 type filter hook forward priority 0;
 ip protocol tcp flow add @f

}
}

● Conntrack entries are owned by the flowtable:
cat /proc/net/nf_conntrack
ipv4 2 tcp 6 src=10.141.10.2 dst=147.75.205.195 sport=36392
dport=443 src=147.75.205.195 dst=192.168.2.195 sport=443
dport=36392 [OFFLOAD] mark=0 zone=0 use=2

Flowtable bypass (4)

● Flow offload forward PoC in software is ~2.75
faster in software:

● pktgen_bench_xmit_mode_netif_receive.sh to dummy
device to exercise the forwarding path

– One single CPU
– Smallest packet size (worst case)

● Performance numbers:
– Classic forwarding path (baseline): 1848888pps

– Flow offload forwarding: 5155382pps

Flowtable bypass (5)

● Upstream since 4.16 (January 2018).
● Recent patches:

– Tear down feature: send flows back to slow path
● RST and FIN packets.
● Limited pickup time.
● Only for TCP and UDP by now.

– Fix offloading of SNAT+DNAT flows

– Fix: Don’t remove offload when other netns's interface is down.

– Fix interaction with VRF.

– Attach dst to skbuff.

Flowtable bypass (6)

● Hardware offload infrastructure (~200 LOC)
available.

● Not yet upstream, waiting for a driver :-(
● User enables explicitly “offload” flag to enable

hardware offload.
● New ndo hook for offloads or generalise

existing ndo for this purpose.

Earlier flowtable bypass + GRO

● [PATCH net-next,RFC 00/13] New fast forwarding path on Thu, 14 Jun
2018 16:19:34 +0200 (Joint work with Steffen).

● Idea:
– Do flowtable lookup earlier than ingress (before taps)

– Avoid reiterative routing lookups

– Combine it with GRO batching
● Build a chain of skbuffs with same flowtable entry
● Pass them in on go to neigh_xmit

– Otherwise, slow path (pass it to generic GRO handlers)

● Feedback:
– GRO not the right place for batching? Use sublists?

– Aaron Conole’s patchset: No IPSec integration though

Earlier flowtable bypass + GRO (2)

table x {

 flowtable f {
 hook early_ingress priority 0; devices = { eth0, eth1 }
 }
 chain y {
 type filter hook forward priority 0;
 ip protocol tcp flow add @f
 }
 }

● Numbers:

 TCP TSO TCP Fast Forward
 32.5 Gbps 35.6 Gbps

 UDP UDP Fast Forward

 17.6 Gbps 35.6 Gbps

 ESP ESP Fast Forward

 6 Gbps 7.5 Gbps

Ongoing work

● Patch to add IPSec support (not tested):
– https://patchwork.ozlabs.org/patch/982747/

● Setup entry in flowtable from first packet.
– Needs explicit configuration from user.

● Empty devices in flowtable?
table x {
 flowtable f {
 hook ingress priority 0; devices = {}
 }
 chain y {
 type filter hook forward priority 0;
 ip protocol tcp flow add @f
 }
 }

https://patchwork.ozlabs.org/patch/982747/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10

