
 Hardware switches - the open-source approach

Jiří Pírko

Red Hat
Prague, Czech Republic

jiri@resnulli.us

Abstract
Imagine buying off the shelf switch hardware, install Fedora (or
any other distribution) and configure it using standard Linux
tools. This is not possible at the moment primarily because of
lack of unified and consistent platforms and driver interfaces.

The current state of support for switch chips in Linux is not
good. Each vendor provides userspace binary SDK (Software
Development Kit) that only works with their chips. Each of this
SDKs has proprietary APIs. To get switch chips properly
supported there's need to introduce a new infrastructure directly
into Linux kernel and to work with vendors to adopt it.

This paper presents the current effort to unify and uphold the
Linux networking model across the spectrum of devices which is
necessary to make Linux the cornerstone of industrial grade
networking. The scope of this paper covers state of art with
current implementation of standard commodity switches such as
top of rack switches, small home gateway device as well as SR-
IOV NIC embedded switches.

A device model and driver infrastructure will be presented for
accelerating the Linux bridge, Linux router, accelerated host
virtual switches and flow level offloads when supported by the
hardware underneath.

Keywords
switch, offload, ASIC, bridge, router, OVS, SR-IOV

 Introduction
This paper focuses on getting switch chips supported in
Linux kernel. Nevertheless, getting the proper free and
open-source support into Linux kernel will certainly help
other non-Linux based free OSes as well.

In this paper we are going to use the term “switch” as a
generic term to refer to ASICs (Application-Specific
Integrated Circuit) that not only support L2 but also L3,
flow-based forwarding, etc.

Note that the scope of this paper does not include
customizing Linux for particular switch boards. It only
covers Linux kernel infrastructure needed to enable
existence of switch chip drivers.

Each vendor provides binary a SDK (Software
Development Kit) to support their chips. These SDKs have
proprietary API. SDKs does not fit to the Linux open-
source infrastructure, they cannot not be included in the
major distributions.

The paper provides an alternative support solution, using
free and open source approach. That includes proper in-

kernel switch chip support with proper infrastructure witch
allows to use existing tools.

The paper begins with describing the status quo of
current switch support in Linux. Then, the tools needed to
make the switch ASICs relevant in Linux will be described.
The comparison of the merits of putting the driver in kernel
in compare to userspace will follow. Then, the desired
model will be presented. The current upstream Linux
kernel state of switch chip integration and description of
future vision including L3 routing and flow-based
forwarding offloads will follow. At the end, the SR-IOV
use-case will be presented.

Switch Chips Support And How Enhance It
This section describes the current state of switch chips
support in Linux. A proposal to bring this forward is
introduced together with desired model, behavior and
features.

Figure 1: Current state

NIC driver

userspace

kernel

kernel

hardware

vendor X switch Y chip

swp0phy swp1phy

eth0

swpNphy

......

#ip
#tc
#bridge

RT Netlink ethtool ioctl

#ethtool

custom app
Network
Manager

eth0phy

NIC

vendor X
proprietary

SDK

proprietary switch app

Proceedings of netdev 0.1, Feb 14-17, 2015, Ottawa, On, Canada

Switches In The Ice Age
The current poor state of Linux switch support could be
easily described as being in the ice age. Figure 1 shows the
current state on the left side, in red color. For comparison,
on the right side there is shown how standard NIC
ecosystem looks like. The pink dotted lines emphasize the
relationship of a physical port and netdevice instance.

There are at least two parties involved: The switch chip
vendor and switch box vendor. Usually, the switch box
vendors do not manufacture the switch chips. They buy
chips from other companies and only integrate them in
custom switch boards, including other chips, including
CPU etc.

Chip vendors believe not exposing interfaces to their
ASICs gives them a technical advantage over their
competitors. Often times the real reason is economical in
locking in their customers given that these ASICs are
commodity. Therefore, they came up with their own
wrapping library, in the form of SDK. This allows user to
communicate with the chip only using exposed set of
wrapper functions.

These SDKs are userspace binaries which directly
access switch chip hardware, without kernel involvement.
This causes great inconsistency of approach comparing to
other class of devices, for example NICs. Naturally, every
SDK by different vendor looks differently. Each SDK's
API is different. So this brings a great vendor lock-in for
the switch box vendor.

Great number of switch boxes use custom Linux-based
OSes. The existence of SDKs has another consequence.
The switch box vendors are pushed to create their own
proprietary tools for switch chip manipulation, even
though they use Linux kernel. So this brings a great vendor
lock-in for switch box users – customers.

Getting Out Of The Ice Age
So it is clear that in order to break this chain and make the
switch environment vendor lock-in free, open and
maintainable, there is a need for free and open-source
approach. There is need for an infrastructure so the switch
chip vendors can create their own (hopefully) open-source
drivers using the mentioned infrastructure.

That may eventually lead to the “perfect” state where a
customer can go buy any switch box, install Linux
distribution of choice and run every switch box in the same
uniform way, no matter what specific switch chip hardware
it is based on. Something similar to how the desktop and
server environment looks like at this moment.

The question was if this infrastructure should exist in
kernel or rather in userspace. There were some people who
preferred the second option. Their main argument was that
the amount of code is so big it would not be appropriate to
have it in kernel. This paper argues that the kernel
approach is the preferred approach to solving the problem.

Given the fact Linux is monolithic kernel, all hardware
drivers reside in kernel. Even those, what once were in
userspace. There is need to be able to use standard tooling
for switch chips manipulation and that is not possible

without driver being in kernel. Of course, in theory, this
could be achievable with userspace approach. But that
would require ugly and most likely unacceptable
“trampoline model” in which kernel acts as a repeater
between multiple userspace applications (tools and
userspace drivers).

Desired model
The main goal certainly is to provide an infrastructure
which would allow to reuse existing tools without need to
do any or only minimal modifications.

The most fundamental building block for the model is a
switch port. It makes a lot of sense to represent these ports
in form of a network device so every port would be seen as
an independent network device.

• These port devices should be also able to to
work as independent NICs. Users can assign L3
addresses to them and use them for sending and
receiving packets. In case a user sets up routing
among the ports, the driver should be notified
about it. In case hardware is capable, the driver
should offload set up offloading so the routing
happens directly in hardware.

• Another important use-case would be to put the
port devices into a layered devices, such as
bridge, bond, Open vSwitch datapath and so on
(those are referred to as “layered devices” later
in text). In this case, the functionality of layered
device may be fully or partially offloaded into
switch hardware. Driver should take care of the
hardware offloading setup and also it should
provide info about used offloads to higher
layers.

Figure 2: Desired model

NIC driver

userspace

kernel

kernel

hardware

vendor X switch Y chip

swp0phy swp1phy

eth0

swpNphy

......

#ip
#tc
#bridge

RT Netlink ethtool ioctl

#ethtool

custom app
Network
Manager

eth0phy

NIC

switch Y
driver

swp0

swpN

swp1

Proceedings of netdev 0.1, Feb 14-17, 2015, Ottawa, On, Canada

• Drivers should provide ethtool API for standard
option settings, such as link speed, duplex,
offload features, PHY type so as getting port
statistics.

• There is need to provide a way to find out if
two ports belong to the same switch chip. That
is not only informal for user, but it also
provides an information for application and
layered devices if there is possible to offload
features between the ports.

Figure 2 shows the desired model. It is apparent that the
ecosystem will look very much like the existing NIC one.

Tooling
Over the years, a standard set of tools was assembled in
Linux networking world. Following is a brief overview of
related tools to switch chips. Most of them communicate
with kernel using the Netlink interface. Only ethtool is
using ioctl interface.

ip This is a very essential tool. For switches, it make sense
to use ip for port devices for following purposes:

• port devices listing
• setting the link
• setting L3 addresses
• putting port devices into bridges
• adding VLAN devices on port devices
• getting port statistics
• getting information if two port devices belong to

the same switch chip

ethtool This is another widely used tool. It has many
weaknesses, for example ioclt interface and inability of
kernel to propagate asynchronous events to userspace. But
as long as it exists, we need switch drivers to implement
ethtool API. For switches, it also make sense to use ethtool
for port devices for following purposes:

• getting and setting speed and duplex
• setting carrier state
• getting port statistics
• manipulating existing NIC offloads

bridge A tool for controlling bridge devices. It allows to
setup bridge-specific options, manipulate FDB entries and
to monitor PF_BRIDGE events. For port devices, user of
this tool should be able to push bridge port setting down to
hardware. It should be also able to see hardware event, for
example FDB learns, etc.

tc This tool is used to configure kernel traffic control
system. It is based on matching incoming or outgoing
packets in filters and executing predefined chain of
actions[1]. For port devices, it is desirable to offload filter
matching and actions in case hardware supports it.

open vSwitch toolset There are many tools in open
vSwitch[2] package. Many of the are either directly of via
a daemon (ovsd) working with kernel datapath module.

Together they implement OpenFlow based virtual switch.
For port devices, it is desirable to provide possibility to
offload flow-based packet forwarding into hardware.

Linux Switchdev infrastructure
There are two main items which the switchdev
infrastructure brings along:

• Switch device specific set of network device
operations (ndos). These should be added when
code needs to pass some information to switch
driver and also when core needs to query the
driver for some information back. For stacked
setups, where for example port device is not
directly a port of a bridge, but there is a bonding
instance in between, the middle-man driver should
take care of propagating the ndo call further down
to the port device.

• Switch device notifier. This should be used by
switch drivers in order to propagate hardware
events to networking core. For stacked setups,
middle-man drivers should take care of
propagating notifier calls up to their masters.

Figure 3 shows two call chains. On the left side, there
are users calling switch actions. Those may be resolved in
the driver directly but most of the times, it will be
propagated to hardware. On the right side, there is a event
notification chain which is called in case an event happens
in hardware.

Figure 3: Switchdev infrastructure

switchdev
infrastructure

RT Netlink Ethernet bridge
Open vSwitch

datapath

switch X driver

int netdev_switch_*(...)

ops->ndo_switch_*(...)

action event

notifier

int call_netdev_switch_notifiers(...)

notifier

Proceedings of netdev 0.1, Feb 14-17, 2015, Ottawa, On, Canada

L2 forwarding offload
At the moment, the first phase of switchdev infrastructure
has been merged into upstream kernel. It includes support
for Linux bridge datapath offloading. It also includes the
Rocker[3] switch driver which is the first consumer of this
infrastructure.

Rocker switch is hardware emulated in QEMU. It
follows Broadcom OF-DPA model, but it is possible to
extend it easily with another model in future. The main
purpose of Rocker switch existence is that it provides
possibility to do switch device infrastructure prototyping.

Two new ndos were introduced:
• ndo_switch_parent_id_get – Is called to obtain ID

of a switch port parent (switch chip).
• ndo_switch_port_stp_update – Is called to notify

switch driver of a change in STP state of bridge
port.

There has been introduced switchdev notifier along with
two events:

• NETDEV_SWITCH_FDB_ADD
• NETDEV_SWITCH_FDB_DEL

This events are raised by Rocker switch driver in case
hardware learns to add of delete a FDB entry and the
learned FDB is propagated to bridge. It is possible to
disable this from userspace for particular port using
IFLA_BRPORT_LEARNING_SYNC flag.

Plans for future – L3 forwarding offload
There has been an attempt[4] to introduce L3 IPv4 support
into switchdev infrastructure by Scott Feldman. This
patchset tried to introduce two new ndos:

• ndo_switch_fib_ipv4_add
• ndo_switch_fib_ipv4_del

These ndos are called by the core IPv4 FIB code when
installing/removing FIB entries to/from the kernel FIB.
The patchset also includes implementation of the interface
extension in Rocker switch driver.

There is need to determine on which port device the ndo
should be called on. Note that in this case port device is
used as an entry point to switch device, since the route is
not directly anchored on the port. Any of the switch ports
could be used. The FIB entry (route) nexthop list is used
for this. The route's fib_dev (the first nexthop's dev) is used
find the port device by recursively traversing the fib_dev's
lower_dev list until a port device is found.

This approach was discussed on the mailing list and
some concerns were raised regarding the recursive search
in case of a layered devices are involved. One solution may
be to allow layered devices to propagate the ndo call
themselves.

Also, there must be considered a case when multiple
switch chips are involved. In that case, there is need to find
an entry port device for all of them.

Another issue was discussed on the mailing list
regarding the virtual routing tables. There was a suggestion
to include virtual routing tables support into switchdev
interface. But the inclusion of virtual routing tables support
in kernel does not seem likely at the moment.

Plans for future – Flow-based forwarding offload
There have been couple of attempts[5] to introduce flow-
base offloading offload support by John Fastabend, called
“Flow API”[6].

The patchset introduces a new Generic Netlink interface
called “net_flow_nl” which should be used for offloaded
flows maintenance. This is not only supposed to be used to
flow insertion, deletion and statistics gathering, but also for
obtaining hardware capabilities. Userspace app should
query these capabilities and process the insertion
accordingly.

The patchset introduces a set of ndos to query the
capabilities:

• ndo_flow_get_actions
• ndo_flow_get_tbls
• ndo_flow_get_tbl_graph
• ndo_flow_get_hdrs
• ndo_flow_get_hdr_graph

And to insert and remove flow rules:
• ndo_flow_set_rule
• ndo_flow_del_rule

Together with the infrastructure, the patchset introduces
its implementation in Rocker switch driver.

In the future, it is plan to support not only getting the
tables and table graph, but for the hardware which supports
it, also to set it according to user needs.

There has been a discussion whether it is correct to
introduce a new user interface just for the hardware
offloading purposes. There might make sense to provide
use the same interface for in-kernel flow-based forwarding
implementations as well. These are of course TC filter-
action subsystem Open vSwitch kernel datapath and
nftables.

All of these interfaces have separate and independent
user interface. User app which would like to maintain both
in-kernel and offloaded flows setup would have to use two
separate interfaces. That seems incorrect.

Another problem with “Flow API” is that it allows
userspace to directly set-up hardware, without the same
features being implemented in kernel. So in that case, the
correct term is not “feature offloading” but rather
“hardware dataplane configuration”. This approach in not
acceptable in mainline kernel, where every offloaded
functionality much be implemented in kernel as well.

TC-based flow manipulation interface
There has been a proposal[7] to expose the Flow API not
via a separate Generic Netlink, but to rather reuse TC
filter-action interface for both software implemented (Open
vSwitch) and offloaded datapath.

Proceedings of netdev 0.1, Feb 14-17, 2015, Ottawa, On, Canada

That is shown in Figure 4. For seamless communication
between a userspace application and kernel, a new TC
interface called “xflows” is used. It consists of xflows filter
and xflows action. These two act as a front-end to
userspace. There can be multiple back-ends implemented
for xflows, each representing hardware or software
datapath with specific capabilities.

There is a downside using TC interface for flows API.
That is RTNL mutex which is held for all TC Netlink
actions. However, it is very likely possible to change the
interface so that RTNL mutex could be avoided. This needs
further research.

This approach is also unacceptable in mainline kernel
because of the same reason “Flows API” is not. It allows to
configure hardware for features which are not implemented
in kernel.

SR-IOV use-case
Network interface cards with SR-IOV capability include an
embedded switch. This switch implementation differs from
card to card.

There is no reason to look at this switch differently and
it should be treated as ordinary standalone switch. Figure 5
shows a SR-IOV example use-case with one PF and 3 VFs.
It does not matter if particular VFs are passed to virtual
machines or not. There is a separate driver for NIC
embedded switch and for NIC itself (might be a separate
driver or PF and VFs as well).

Currently, in virtualization setups, it is very challenging
to achieve line rate when forwarding small packets
(64bytes) to and from virtual machine, even on 10Gbit
links. This could be resolved by SR-IOV NIC with an
embedded switch capable of offloading Open vSwitch
functionality.

DSA use-case
DSA (Distributed Switch Architecture) is a driver for
multiple similar switch chips. They mostly act as a PHY
connected to MII (Media Independent Interface) bus.

Figure 6 shows how DSA is modeled in kernel. Each
port is represented with a netdevice. In order to transmit
and receive packets via this netdevices, DSA transparently
uses the host facing interface. DSA tags are used to
distinguish through what port a packet should be send and
from what port a packet was received.

It makes sense to extend DSA to use switchdev API as
well in order to provide desired offload possibilities.

Figure 4: TC xflows example

userspace

kernel

kernel

hardware

RT NetlinkTC filters:
u32
bpf
...

xflows

actions:
police
mirred

...
xflows

xflows backend API

vendor X switch Y chip

swp0phy swp1phy swpNphy

......

switch Y
driver

swp0

swpN

swp1

xflows backend
implementation

Open vSwitch
datapath

xflows backend
implementation

br0

generic Netlink

open vSwitch
userspace

custom flow
managing app

Figure 5: SR-IOV example

NIC X driver

kernel

hardware

phyPF

NIC X
embedded
switch
driver

SR-IOV
NIC X

embedded
switch

swpPF

VF0

swpVF0

VF1

swpVF1

VF2

swpVF2

ethPF

ethVF0

ethVF1

ethVF2

swpPF

swpVF0

swpVF1

swpVF2

Proceedings of netdev 0.1, Feb 14-17, 2015, Ottawa, On, Canada

Conclusion
The current effort to handle switch chips in a open-source
way is around for about a year. Over the time, it is notable
that some of the people are changing view. First, the chip
vendors were very happy with their SDKs and showed
minimal or no interest in doing things differently. This is
slowly changing, and it is great to see vendors contributing
their ideas to the discussions and by sending patches.

There is a large interest in supporting SR-IOV cards
with advanced embedded switch functionality. The current
kernel model allows initial support for bridge features
offload. Proper and full support of SR-IOV embedded
switches may be the breaking point. Support for the ASICs
will probably follow.

It is only a matter of time when the solution for
offloading flows will be introduced and merged to mainline
kernel as well. After that, there will be relatively easy to
offload flow-based forwarding solutions, including very
popular Open vSwitch.

Acknowledgements
Thanks belongs to all people involved in the discussions on
this topic, namely Jamal Hadi Salim, Thomas Graf, Scott
Feldman, John Fastabend and Roopa Prahbu.

References
1. Jamal Hadi Salim, “TC Classifier Action Subsystem
Architecture”, Proceedings of Netdev 0.1, Feb 2015
2. Open vSwitch website, http://openvswitch.org/
3. Scott Feldman, “Rocker: switchdev prototyping
vehicle”, Proceedings of Netdev 0.1, Feb 2015
4. Scott Feldman, “patchset: swdev: add IPv4 routing
offload”,
http://www.spinics.net/lists/netdev/msg310259.html
5. John Fastabend, “patchset: Flow API”,
http://www.spinics.net/lists/netdev/msg313071.html
6. John Fastabend, “Flow API: An abstraction for
hardware flow tables”, Proceedings of Netdev 0.1, Feb
2015
7. Jiří Pírko, “xflows proposal”,
http://www.spinics.net/lists/netdev/msg313485.html

Author Biography
Jiří Pírko is a Linux kernel hacker who has been digging in
networking subsystem for some while. He is an author of
Team device, a bonding replacement. He is also a co-
author of Rocker switch and its support in Linux kernel
including the switchdev infrastructure. His life purpose is
to keep things open, nice, clean and easy.

Figure 6: DSA example

kernel

hardware

switch Y chip

swp0phy swp1phy swpNphy

......

switch X
DSA driver

swp0

swpN

swp1eth0

tagged

Proceedings of netdev 0.1, Feb 14-17, 2015, Ottawa, On, Canada

https://www.netdev01.org/sessions/21
https://www.netdev01.org/sessions/21
http://www.spinics.net/lists/netdev/msg313485.html
https://www.netdev01.org/sessions/34
https://www.netdev01.org/sessions/34
http://www.spinics.net/lists/netdev/msg313071.html
http://www.spinics.net/lists/netdev/msg310259.html
https://www.netdev01.org/sessions/2
https://www.netdev01.org/sessions/2
http://openvswitch.org/

