
MLAG on Linux

Scott Emery, Wilson Kok

Cumulus Networks Inc.
180 E. Dana Street, Mountain View, CA

scotte@cumulusnetworks.com
wkok@cumulusnetworks.com

Abstract
MLAG  is  a  networking  technology  which  allows  for
increased redundancy and bandwidth in layer 2 networks.
This  paper  begins  with  an  overview  of  MLAG,  the
problems it solves, and the common use cases. This leads
to  the  important  design  considerations  and  caveats  of  a
properly  functioning  MLAG  implementation,  especially
with  respect  to  MAC  address  learning  and  packet
forwarding.  This  requires  additional  capabilities  to  be
added to the Linux kernel bridging and bonding drivers for
proper  MLAG  operation.  An  example  of  a  recent
implementation of MLAG on a Linux system is used to
describe  the  types  of  data  which  must  be  synchronized
between  bridges  and  the  interactions  with  other  system
components, such as the spanning tree daemon.

Keywords
MLAG – Multi-chassis LAG
LAG – A link aggregation group
ISL – Inter-switch link
Bond – The term used in this paper for a LAG, EtherChannel,
Port  Group,  Trunk,  or  other  words  used to  describe this  same
concept.
Singly connected node  –  a  node  that  is  connected to  a  single
switch
Dually connected node – a node that is connected to two different
switches
MLAGd – MLAG daemon

 Introduction
Multi-Chassis  Link  Aggregation,  or  MLAG,  is  a  bond
where at least one of the bond partners has member ports
on  multiple  physical  systems.  This  is  illustrated  in  the
following diagram.

In this diagram H2, H3, and H4 are each configured with a
2-member bond. However,  unlike a traditional  bond, the

other end of each bond member is connected to a different
physical device, S1 and S2.

In  a  network  implementing  an  MLAG  there  are  no
assumptions  or  additional  requirements  for  the  bond
partners implementing a traditional bond, H2, H3, and H4.
They could be running any OS and are not required to run
any particular protocols. However, if they choose to run the
Link  Aggregation  Control  Protocol,  LACP,  then  the
protocol must function properly. From the point of view of
H2, H3, and H4 they have a 2-member bond connected to a
single partner device. This means that they can use either
or both bond members and can distribute traffic across the
two  members  in  any  manner  they  desire.  This  paper
assumes that the devices implementing MLAG, S1 and S2,
are running Linux with the enhancements described.

Another common example of MLAG is one that is formed
between a pair of switches connecting to another pair of
switches as shown in the figure, below.

In this example, switches S1 and S2 form a logical switch
and so do switches S3 and S4. Between the two logical
switches is a single, four-member bond.

In this document, we will focus on the description of these
two  common  examples.  The  extension  of  the  model  to
support  other  cases  may  require  additional  mechanisms
and considerations but by no means is it precluded by the
proposal presented in this document.

Control plane model
The  MLAG control  plane  functions  include  but  are  not
limited to the followings:

• identify member interfaces of the MLAG across
different physical nodes

S1S1 S2S2

H1H1 H2H2 H3H3 H4H4 H5H5

S1S1 S2S2

S3S3 S4S4

Proceedings of netdev 0.1, Feb 14-17, 2015, Ottawa, On, Canada

mailto:scotte@cumulusnetworks.com
mailto:wkok@cumulusnetworks.com


• verify if the member interfaces' configuration and
runtime parameters satisfy the criteria for joining
the MLAG and becoming operational

• set  up  the  data  plane  based  on  the  forwarding
rules for MLAG operational interfaces as well as
non-MLAG singly connected interfaces

• synchronize  MAC  address  database  and  IGMP
group membership information to reduce flooding
of traffic

• detect  various  link  failure  and  node  failure
scenarios and ensure minimum traffic  disruption
and maintain loop free topology at all times

While it is possible to implement the entire MLAG control
plane  in  the  kernel,  we  believe  it  is  simpler  and  more
robust to delegate most of the control plane functions to a
protocol  daemon,  i.e.  MLAG  daemon,  while  using  the
kernel  to  enforce  correct  default  interface  state.   This
model is analogous to the kernel bridge driver working in
tandem with  user  space  Spanning  Tree  daemon  such  as
mstpd.

MLAG Daemon
In order to facilitate communication between the MLAG
peers a daemon runs on each device. The daemon:

• Communicates with the peer MLAG daemon
• Retrieves and modifies kernel state, including the

FDB, the MDB, LACP partner  information, and
VLAN configuration

• Communicates with the user-space Spanning Tree
daemon

Inter-switch link (ISL)
The two physical  switches  in  a  logical  node need to  be
interconnected by a physical link or bond.  We will refer to
this  connection as  the ISL (inter-switch link) throughout
this document.

The  ISL  is  used  by  the  MLAG  daemons  to  exchange
management  traffic  regarding  the  control  of  the  MLAG
operations.   The  ISL  is  also  part  of  the  L2  topology,
carrying protocol traffic such as Spanning Tree PDUs and
IGMP reports,  as  well  as  data  traffic  in  the  case  where
there are singly connected nodes, either by configuration or
due to link failures.

MLAG identification and formation
An MLAG physical node needs to identify the links that 
are connecting to it's peer physical node in order to form a 
LAG.

MLAG-enabled attribute and MLAG id

Each physical node within a logical node assigns an id to
the interface by configuration.  The physical nodes in the
same  logical  node  exchange  information  about  their
MLAG  member  interfaces.   In  the  simplest  case,  the

logical nodes can declare interfaces with the same MLAG
id to successfully form an MLAG without any verification.

Alternatively,  other  criteria  can  be  used,  such  as  using
LACP to  confirm  the  identity  of  the  peer  logical  node,
before declaring the MLAG being formed and operational.
The criteria  may  even  include  configuration  consistency
checks  on  the  interfaces  across  the  physical  nodes,  e.g.
ensuring they have the same VLAN membership.

Here,  we propose that an MLAG member connection be
configured as a Linux bond on each physical node, and the
kernel bonding driver carries an MLAG-enabled attribute
on the bond.  The attribute is crucial in allowing the kernel
to properly enforce the default  interface state and traffic
behavior before the interface is deemed MLAG operational
by the MLAG daemon.

The MLAG id may also be carried as a bond attribute in
the bonding driver, though we believe this is not strictly
necessary and can be maintained by the user space MLAG
daemon.

MLAG in 802.3ad mode
When an  MLAG is  in  802.3ad  mode,  LACP is  running
between physical nodes of the two logical nodes.  Using
the  example  of  a  dual  homed  host  connecting  to  two
switches, the host is running two LACP sessions, one with
each switch.  In order for the two links to aggregate under
the same bond, the two switches need to present the same
LACP system ID to the  host.   The  LACP system ID is
directly derived from the bond interface mac address. As
such,  this  can  be  simply  achieved  by  setting  the  same
interface  mac addresses  on the bonds for the MLAG on
both switches.

Here  we  propose  that  the  system ID can  be  de-coupled
from the bond MAC address. This allows the LACP system
ID to remain static even when bond membership and MAC
addresses change. 

Note  that  the  two  switches  should  only  be  setting  the
common system ID on the bonds when they are ready to
operate  in  MLAG  mode.  For  example,  during  boot  up,
before  the  two  MLAG  daemons  can  communicate  with
each other, the bonds should not be set with the common
ID.  Failure to do  so can lead to data path loops and other
traffic problems.

MLAG Data Plane Model

A dual  homed   node   may   send  and   receive   traffic   from
either or both the the links to the switches.  It is important
to enforce the following traffic forwarding rules:

• the same packet is not delivered to the node more
than  once  via  different  paths   that  constitute  the
same MLAG

• packets sourced from a dual homed node should
not be delivered back to the node via a different
path

Proceedings of netdev 0.1, Feb 14-17, 2015, Ottawa, On, Canada



• loops must never be formed
In order to enforce these rules, the following mechanisms 
are used.

Duplicate filtering

A filtering mechanism that is enforced when packets egress
the ISL. A packet that traverses the ISL can be forwarded 
to single homed nodes but dropped if it is to be delivered to
dual homed hosts.  In Linux, ebtables is one possible 
option to implement that behavior.  An ebtables rule 
matching the ISL as input interface and the output interface
to the dual homed host can be installed to drop packets.  
When the dual homed host becomes single homed, the 
ebtables rule can be removed.  Using ebtables, however, 
may not scale, as one rule is required per output interface, 
and in the non VLAN-aware bridge model, there can be 
many VLAN devices on each output port that belongs to 
many bridges.  One simple way to solve this problem is to 
introduce the bridge port attributes of 'ISL' and 'dual-
connected' to allow the bridge driver to make filtering 
decision based on them.

Interface States

When an MLAG-enabled bond is created the bonding 
driver places the bond in the protocol-down state. This new
interface state causes the member interfaces to be carrier 
down. This state is necessary because it signals to the 
partner at the other end of the member link that the link is 
not available for use. When the MLAG daemon takes 
control of the bond, it will change the state to dormant. The
dormant state ensures that only protocol traffic e.g. LACP 
PDUs can pass and not general data packets.  When the 
MLAG control plane determines that the MLAG is formed 
and this MLAG member bond interface can start 
forwarding traffic, the MLAG daemon will clear the 
dormant state.

Split brain handling

In the case of a split brain situation, e.g. the ISL is down, 
all MLAGs need to be broken up in order to avoid loops 
and incorrect traffic behavior.  For 802.3ad mode MLAGs, 
it is possible to change the LACP system ID on one side to 
cause the LACP peer to disaggregate the bond and keep 
one aggregator inactive.  However, for non 802.3ad 
MLAGs, this is not an option.  A more robust and universal
way to achieve this is to allow only links on one switch to 
be operational and keep the links on the other switch 
carrier down.  This is achieved with the new protocol-
down interface state. The reason for keeping the links 
carrier down is such that in the non-802.3ad mode the link 
peer does not attempt to send traffic which is only to be 
discarded, thus causing a traffic black-hole.

Since disabling links is considered a drastic, but necessary, 
requirement, care should be taken to make certain that the 
logical switch has entered a split-brain situation. It is 
recommended that heartbeat mechanisms are used on 
multiple paths between the peer switches. Only when the 

ISL goes down and at least one heartbeat is still active are 
the switches in split-brain mode.

Note that single homed connection does not require any 
change when in split-brain mode.

MAC address and IGMP states Management
The  following  measures  are  crucial  to  the  operation  of
MLAG in terms of robustness and traffic performance and
convergence:

• A dual  homed  node  can  send  packets  with  the
same  source  MAC  address  on  any  or  both  the
links to the two switches.  The packets may also
cross  the  ISL.   This  can  produce  the  following
problems.

◦ when  the  MAC address  is  only  learned  on
one  switch,  traffic  destined  to  this  address
and  sourced  from  the  other  switch  will  be
flooded until the node sends packets with the
same address  towards  that  switch  also,  and
there is no guarantee when this will happen

◦ the source MAC address can move between
the ISL and the MLAG, worst case on a per
packet  basis,  causing  constant  MAC moves
and potentially out-of-order packets

The proposed solution is for the MLAG daemons on both
switches to synchronize their MAC address databases and
disable MAC address learning on the ISL.

Similarly, IGMP reports and queries may be seen by only
one of the switches.  The MLAG daemons can synchronize
IGMP group membership and router ports information so
that multicast traffic distribution can converge faster.

Spanning Tree operations with MLAG
Spanning Tree ensures a loop free Layer 2 topology.  In an
MLAG  environment  where  a  pair  of  switches  operate
logically  as  a  single  switch  from  the  forwarding
perspective,  some modifications are needed for Spanning
Tree to operate correctly.  More importantly, in the case of
link or node failures or MLAG transitions, Spanning Tree
must be able to detect and break loops.

The  approach  presented  here  requires  the  minimum
amount  of  Spanning  Tree  state  synchronization  between
the  MLAG  switch  pair.   Each  switch  calculates  the
topology independently based on its BPDU exchange with
its neighboring nodes, with the following additional logic:

• Spanning Tree identifies which is the ISL

• a  BPDU  received  on  a  root  port  needs  to  be
processed and also relayed across the ISL to it's
MLAG peer switch.

• The  relayed  BPDU  needs  to  carry  information
about  the  ingress  port.  In  case  the  BPDU  is
received  on  a  dually  connected  link,  the  link
identification should allow the peer MLAG switch

Proceedings of netdev 0.1, Feb 14-17, 2015, Ottawa, On, Canada



to match it up to the local interface that is part of
the  MLAG,  making  the  BPDU  appear  to  be
coming on the MLAG from the peer logical node.
The simplest way to do that without introducing
tunnel  encapsulation  is  to  overwrite  the  BPDU
source MAC address with the LACP system id of
the peer logical node.  In case the MLAG is non-
802.3ad, the source MAC address can be encoded
with the MLAG ID that is common between the
two switches.

• Spanning Tree does not originate BPDUs on the
MLAG member link if the switch MLAG role is
secondary.

• Spanning  Tree  sends  and  receives  BPDUs  on
singly  connected  links  as  normal,  even  if  the
switch MLAG role is secondary.

• The MLAG switch pair uses a common bridge id
when generating BPDUs.  The MLAG switches
stop using the common bridge id when MLAG is
no longer operational.

Other Considerations

MLAG Control Traffic

The MLAG daemons exchange information regarding the
MLAGs  and  interfaces.   The  daemons  should  also  be
sending periodic keep-alives to ensure the liveness of the
peer such that it can react quickly in case of the peer not
alive.  This traffic crosses the ISL, and it is important to
ensure that the traffic:

• is given high priority versus normal data traffic

• is independent of the network topology even when
the ISL is  determined  to be  part  of  a  Spanning
Tree loop and is blocked

To achieve the first  goal, the management traffic  can be
assigned  a  more  preferable  traffic  class  and  obtain
preferential treatment in queueing and scheduling.

To  achieve  the  second  goal,  we  propose  the  ISL  be
configured as a VLAN on the ISL that is not part of any
bridge.

 

Acknowledgements
The  authors  wish  to  thank  Cumulus  Networks  which
funded  the  development  of  the  MLAG  implementation
used as the basis of this paper.

Proceedings of netdev 0.1, Feb 14-17, 2015, Ottawa, On, Canada


