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Abstract
As  network  rates  continue  to  increase,  the  amount  of  time  to
process  packets  decreases.  This  puts  pressure  on  a  number  of
areas in the kernel, but one area where this particularly stands out
is the IPv4 forwarding information base look-up. This paper will
go  over  a  number  of  changes  recently  made  to  the  FIB  trie
processing  code  and  data  structures  to  improve  both  the
performance and reliability of processing the IPv4 addresses. In
addition,  it  will  propose  some  possible  approaches  under
consideration in order to improve performance.  This will further
enable processing at higher packet rates.
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Introduction
The  IPv4  forwarding  information  base  (FIB)  as
implemented in the Linux kernel is based on a level and
path compress trie or LPC-trie.  The structure is a dynamic
variant of a static level compressed trie, or LC-trie and is
based  off  of  work  by  Nilsson  and  Tikkanen  [1].   The
advantage  to  this  structure  is  that  the  performance
approaches that of a static trie.  At the same time, it reduces
the waste by compressing the trie to reduce the number  of
empty nodes.

Traditionally,  tries  are  described  as  having  an  O(N)
complexity, where N is defined as the length of the key [2].
However when used for IPv4 address look-up within the
Linux kernel this can approach O(N2) as prefix matching
requires  back-tracing  through  the  trie  searching  for  the
longest prefix match.  The LPC-trie helps to reduce this by
aggregating multiple bits of the key into each node, but this
reduction is only linear and does not resolve the underlying
issue with the prefix match algorithm.

In  this  work,  the  look-up  algorithm  was  modified  to
improve the performance.   The idea being to reduce  the
complexity  as  the  original  algorithm  took  a  number  of
unnecessary steps.  This resulted in time wasted checking
keys that could not be the prefix of the look-up value.

Making tnode and leaf Function Similarly
The first step in improving the performance of the look-up
algorithm was to make use of unused space within the leaf
structure  to  bring  the  leaf  and  tnode  members  closer  to
each other in form and function.  Specifically,  by adding
variables  representing  the  position  in  the  key  and  the
number of  bits  represented  by a given node,  it  becomes

possible to incorporate both the  validation of the prefix
and determining the location of the next child into a single
set of instructions.

struct tnode { 
        t_key key; 
        unsigned char bits; 
        unsigned char pos; 
        struct tnode __rcu *parent; 
        struct rcu_head rcu; 
        union { 
                struct {
                        unsigned int full_children; 
                        unsigned int empty_children; 
                        struct tnode __rcu *child[0]; 
                };
                struct hlist_head list; 
        }; 
};

Figure 1. Structure of tnode after modification

In the 3.19 and earlier kernels, the tnode and leaf only
shared a parent and key value.  The least significant bit of
the parent value was used to identify if the object was a
leaf or a tnode.  This resulted in several issues.  It becomes
difficult to make assumptions about the layout of the next
object when the layout is defined based on the contents of
the object itself.  The code experienced significant delays
due to these dependencies.  To resolve this, both the leaf
and  the  tnode  structures  were  merged  into  one  shared
structure with the following layout as shown in Figure 1.
After the modification, the two structures were merged.  A
tnode with a bits value of 0 is a leaf containing a hash list
of  leaf  info  data,  else  the  object  represents  a  tnode
containing  up to 2 ^ bits children.

An advantage to this shared structure is that as a leaf is
limited to a single child only index 0 will be a valid index
for a leaf.  This makes  it possible to use the index value
generated  by  comparing  the  look-up  value  to  the  key
contained  within  the  node  to  determine  if  a  prefix
mismatch  has  occurred,  and  this  is  applicable  to  both  a
tnode or a leaf.

Processing the Prefix Mismatch
The next step in improving the performance was to address
the  cases  in  which  a  prefix  mismatch  had  occurred.   A
prefix mismatch has occurred any time the bits in the key
that are a part of the prefix do not match the given search
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value.   So  for  example  the  prefix  192.168.1.0/24 would
match 192.168.1.1, but it will not match 192.168.2.1 as the
first 24 bits of the two values do not match.

In the 3.19 kernel, this was accomplished by performing
an xor of the search value and the current node's key. Then
the most significant bit of the difference between the two
was found using the __fls function.  Finally, the resultant
value was then used to generate a mask so that the mask
could be used to check for any bits less significant or equal
to the mismatch in the node key.

    pref_mismatch = mask_pfx(cn->key ^ key, cn->pos); 
    if (pref_mismatch) { 
        /* fls(x) = __fls(x) + 1 */ 
        int mp = KEYLENGTH - __fls(pref_mismatch) - 1; 

        if (tkey_extract_bits(cn->key, mp, cn->pos - mp) != 0) 
                goto backtrace; 

        if (current_prefix_length >= cn->pos) 
               current_prefix_length = mp; 
    } 

Figure 2. Previous logic for determining prefix mismatch

To reduce the overhead of this call it is first necessary to
address  the  fact  that  the  prefix  mismatch  depends  on
finding set  bits.   To avoid false mismatches we need to
clear the unused bits of the tnode key.  This is easily done
when a tnode is allocated by performing two shifts on the
key  based  on the pos and bits  values.   This  step  is  not
necessary for a leaf as such an action was already being
performed as a part of the leaf allocation process.  Once the
key  has  been  prepared  the  process  of  determining  if  a
prefix mismatch has occurred is as simple as  the one line
of code as seen in figure 3.  This code works by generating
a mask based on the least significant bit in the node's key.
The result of a value OR'ed with the negative version of
itself  will  always provide  a mask that  starts  at  the  least
significant set bit of the value.  After that, it is a  matter of
performing an XOR between the node key and the look-up
value to generate a delta and then preforming an AND of
the delta and mask to test for any differences that would be
in the prefix of the node key.

    if ((key ^ n->key) & (n->key | -n->key))
        goto backtrace;

Figure 3. New logic for determining prefix mismatch

Strip Bits from the Index Instead of the Key
In previous kernels, prefix matching was performed by

stripping  bits  from the  child  index  via  a  “chopped_off”
count.  This count tracked the number of bits that had been
stripped from the index value.  This value was then fed into
a “current_prefix_length” value which was used to mask
the key during a search into nodes that could be a longest

prefix  match.   This  code  was  simplified  to  consist  of
“cindex &= cindex – 1” as this will always strip the least
significant  bit  from  any  value.   The  chopped_off  and
current_prefix_length  variables  were  dropped  from  the
longest  prefix matching loop as  they provided no actual
value once the update of cindex had been simplified.

Avoid Diving into Shallow Suffixes
The look-up time for a longest prefix match can approach
O(N2)  due  to  the  search  for  the  variations  on  a  given
look-up  value  with  the  least  significant  bits  stripped.
However, in the case of many IPv4, routes they will share a
common prefix length of 24 or 16 [3].  This means that any
search after stripping any bit beyond the first 8 or 16 will
simply  result  in  a  failed  look-up,  or  a  look-up  that  will
need to back-trace to the default route.

A tracking value named slen has been added to the tnode
structure to avoid unnecessary look-ups.  This value tracks
the length of the longest suffix or host identifier contained
within the given tnode.  By tracking this value, it is then
possible  to  avoid  back-tracing  into  nodes  which  do  not
contain a longest prefix match.  As a result, look-up times
are reduced from O(N2) to something approaching  O(N).

Performance Evaluation
In  order  to  evaluate  the  performance  gains  from  these
changes  a  simple  network  was  setup  in  which  a  VM
running  on  an  Intel  Core  i7-4930K  CPU  running  at
3.4Ghz.  The VM was assigned an ixgbe network interface
and allocated a set of dummy interfaces.  The IP addresses
of  the  ixgbe and  dummy interfaces  that  received  traffic
were configured so that they would exist in the deepest part
of the trie and have a significant number of bits set.  This
created an environment that would allow for the maximum
amount  of  time spent  in  the prefix  matching state.   The
resulting trie had a maximum depth of seven for the local
trie and six for the main trie.  The source and destination
addresses at the maximum depth within both tries.

Three  different  tests were conducted.   The first  was a
simple routing test which received packets from the ixgbe
port  and routed them to one of  the dummy ports.   This
allowed for testing of two look-ups both of which failed on
the local trie, and then succeeded on the main trie.  The
second test was a receive test in which the traffic from the
ixgbe port  was received  and then dropped locally.   This
tested two look-ups on the local trie with one success, and
one look-up in the main trie with one success.  The final
test was a transmit test in which packets were transmitted
to the dummy port from the stack and dropped there.  This
consisted of one look-up in the local trie which failed, and
one look-up in the main trie with one success.

From the results in figure 4, we can see that the changes
have significantly reduced the look-up time as measured in
nanoseconds.  Based on the data, we can derive the look-up
and back-trace time for both the 3.19-rc kernel and 3.20-rc
kernel.   The  times  would  appear  to  match  the  expected

Proceedings of netdev 0.1, Feb 14-17, 2015, Ottawa, On, Canada



models  in  which  the  time  for  look-up  is  in  the  10s  of
nanoseconds,  while  back-trace  is  in  the  100s  of
nanoseconds for the 3.19-rc kernel.  For the 3.20-rc kernel
back-trace  is  only  in  the  10s  of  nanoseconds.   This  is
consistent  with  the  transition  from  O(N2)  to  O(N)  as
predicted.

Figure 4: Results of performance testing for initial changes

With  the  changes  made so far,  we have  been  able  to
reduce the complexity for prefix matching from O(N2) to
O(N).  While this helps to improve the performance, there
is still a significant amount of time spent on IPv4 look-up.
In the case of the test  configuration,  the look-up time is
still  over  100ns  per  frame  for  routing  and  receive
workloads, and more than 70ns for transmit workloads.

Removing Leaf Info
One of the biggest reasons for fib_table_looup consuming
so  much  time  is   the  amount  of  memory  that  must  be
accessed.   In  the  main  look-up  loop,  as  many  as  two
cache-lines are accessed per tnode, one per leaf,  one per
leaf info, and one per FIB alias.  One approach that can
help  to  reduce  total  overhead  is  to  remove  unnecessary
objects from the look-up path.

The leaf info object provides a mechanism for grouping
multiple FIB aliases that share a prefix length into a single
hash  list.  However,  such  a  grouping  is  not  common as
often there is only one alias per prefix length.  There are no
functions that truly consider the leaf info when consuming
FIB aliases.  It happens that the FIB alias structure has a
byte  of  free  space  that  could  be  used  to  store  a  prefix
length value.  In my test environment, it  was found that
removing these objects and directly linking leaves to the
fib_alias  hash  resulted  in  a  savings  of  up  to  5ns  per
look-up.

Wrap Pointers in Key Vector
For every  pointer  in  the  trie,  with the exception of  FIB
aliases, there is a key value pair that is associated with it.
This  key  is  normally  used  to  determine  which  of  the
pointers to use, or if the next pointer should be used at all.
By wrapping all of the pointers in a key vector, it becomes
possible to treat  the entire trie as one uniform structure,
including the root.

One change that was tested was to introduce the key
vector  as  seen in  figure 5,  and then encapsulate  the trie
root, all tnodes, and the leaves so that all elements had a
key vector.  An advantage to this is that it then becomes
possible to simplify insertion, deletion, and search as we
start with a key node instead of starting with NULL.  As a
result,  all  tnodes  will  have  a  parent  that  is  ultimately
represented  by  the  trie  root  node.   This  allows  for  an
improvement of as much as 5ns per longest prefix match.
This is because  it is possible to start prefix matching at the
root node, in which case we know there is no further work
to do without having to deference any additional pointers.

struct key_vector {
        union {
                struct hlist_head leaf;
                struct key_vector __rcu *tnode;
        };
        t_key key;
        unsigned char pos; 
        unsigned char bits;
        unsigned char slen;
};

Figure 5: Key Vector Structure

The  root  node,  tnodes,  and  leaves  all  must  follow a
specific  pattern  so  that  they  are  recognizable  by  the
algorithm when being searched.  In order to facilitate this,
there are several specific values that apply to each of the
node types:

• If pos + bits <= 32 and bits  > 0, then the node is a
tnode

• If pos == 0 and bits ==0, then the node is a leaf
• If pos == 32 and bits == 0, then the node is a root

node

These properties lead to several  interesting behaviors.
Since the root node has a position of 32, any key that is
compared against it will always be a prefix match.  This
result in moving onto the child contained within node 0.
Any leaf will always perform a full  prefix match during
look-up, and could be considered as a tnode with only one
child.  The leaf will point to the FIB alias hash  list as its
only child.

Up-level the Key Vector
The final  opportunity for improvement is  to up-level  the
key vector from the individual nodes, into the level above
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it.  Specifically, each node in the trie already contained a
key vector, and a key vector is 16B on 64b or 12B on 32b
systems, while a pointer is only 8B or 4B respectively.  If
we  were  to  modify  the  key  vectors  so  that  instead  of
containing an array of  pointers,  they instead contained a
pointer to an array of key vectors, the result would be that
the key and key data for a given trie node or leaf would
actually be contained in the trie node one level above it.
This should result in as much as a 50% reduction in the
number  of  cache-lines  that  need  to  be  accessed  in  a
look-up.  It will also reduce the overall memory used, as a
leaf would require 32B on a 64b system, and a key vector
in the array would only require 16B due to coalescing the
RCU structures.

In  implementing  this,  there  were  several  issues
discovered.   The  key,  pos,  and  bits  field  must  be  RCU
protected  values  to  avoid  possibly  accessing  an
out-of-bounds  element  within  a  child  of  the  key  vector
array.   This  results  in  the current  implementation
experiencing an O(N2) insertion and deletion time.  This is
because  the  parent  of  any  new  leaf  or  tnode  must  be
replaced if one of the protected values is  changing.  We
believe this can be reduced back to O(N) complexity and
may be resolved in the near future by simply replacing any
resized  region  as  a  single  unit  instead  of  as  individual
parts.

In  testing,  several  issues  were  encountered.   Several
performance issues were found that needed to be addressed
in  the  original  changes  submitted  to  the  kernel.   It  was
necessary to replace a shift of the index with a comparison
of a shifted mask instead.  This allowed for a reduction in
the length of dependency chains within the main look-up
code.  Once this was done, a reduction of up to 10ns per
look-up  could  be  observed  for  the  routing  and  receive
scenarios.

Figure 6: Results of incremental changes

Conclusions
As can be seen in figure 6,  the initial  round of changes
accepted into the 3.20-rc kernel  still  have a considerable
amount  of  room  left  for  improvement.   With  the  three
changes  described  earlier,  it  is  possible  to  reduce
worst-case look-up times by as much as an additional 25%.

Further  work  is  still  needed  as   fib_table_lookup still
consumes a considerable amount of time compared to other
parts of the IPv4 network stack within the Linux kernel.
To improve beyond the current limits, a complete redesign
of the forwarding information base may be necessary as
the lower limits for the FIB table look-up are approaching
the L2 cache latency of the system.  As a result  further
code optimization may yield little to no gain.
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