
Picking Low Hanging Fruit from the FIB Tree

Alexander Duyck

Red Hat, Inc
alexander.h.duyck@redhat.com

Abstract
As network rates continue to increase, the amount of time to
process packets decreases. This puts pressure on a number of
areas in the kernel, but one area where this particularly stands out
is the IPv4 forwarding information base look-up. This paper will
go over a number of changes recently made to the FIB trie
processing code and data structures to improve both the
performance and reliability of processing the IPv4 addresses. In
addition, it will propose some possible approaches under
consideration in order to improve performance. This will further
enable processing at higher packet rates.

Keywords
IP address look-up, performance, trie, longest prefix match

Introduction
The IPv4 forwarding information base (FIB) as
implemented in the Linux kernel is based on a level and
path compress trie or LPC-trie. The structure is a dynamic
variant of a static level compressed trie, or LC-trie and is
based off of work by Nilsson and Tikkanen [1]. The
advantage to this structure is that the performance
approaches that of a static trie. At the same time, it reduces
the waste by compressing the trie to reduce the number of
empty nodes.

Traditionally, tries are described as having an O(N)
complexity, where N is defined as the length of the key [2].
However when used for IPv4 address look-up within the
Linux kernel this can approach O(N2) as prefix matching
requires back-tracing through the trie searching for the
longest prefix match. The LPC-trie helps to reduce this by
aggregating multiple bits of the key into each node, but this
reduction is only linear and does not resolve the underlying
issue with the prefix match algorithm.

In this work, the look-up algorithm was modified to
improve the performance. The idea being to reduce the
complexity as the original algorithm took a number of
unnecessary steps. This resulted in time wasted checking
keys that could not be the prefix of the look-up value.

Making tnode and leaf Function Similarly
The first step in improving the performance of the look-up
algorithm was to make use of unused space within the leaf
structure to bring the leaf and tnode members closer to
each other in form and function. Specifically, by adding
variables representing the position in the key and the
number of bits represented by a given node, it becomes

possible to incorporate both the validation of the prefix
and determining the location of the next child into a single
set of instructions.

struct tnode {
 t_key key;
 unsigned char bits;
 unsigned char pos;
 struct tnode __rcu *parent;
 struct rcu_head rcu;
 union {
 struct {
 unsigned int full_children;
 unsigned int empty_children;
 struct tnode __rcu *child[0];
 };
 struct hlist_head list;
 };
};

Figure 1. Structure of tnode after modification

In the 3.19 and earlier kernels, the tnode and leaf only
shared a parent and key value. The least significant bit of
the parent value was used to identify if the object was a
leaf or a tnode. This resulted in several issues. It becomes
difficult to make assumptions about the layout of the next
object when the layout is defined based on the contents of
the object itself. The code experienced significant delays
due to these dependencies. To resolve this, both the leaf
and the tnode structures were merged into one shared
structure with the following layout as shown in Figure 1.
After the modification, the two structures were merged. A
tnode with a bits value of 0 is a leaf containing a hash list
of leaf info data, else the object represents a tnode
containing up to 2 ^ bits children.

An advantage to this shared structure is that as a leaf is
limited to a single child only index 0 will be a valid index
for a leaf. This makes it possible to use the index value
generated by comparing the look-up value to the key
contained within the node to determine if a prefix
mismatch has occurred, and this is applicable to both a
tnode or a leaf.

Processing the Prefix Mismatch
The next step in improving the performance was to address
the cases in which a prefix mismatch had occurred. A
prefix mismatch has occurred any time the bits in the key
that are a part of the prefix do not match the given search

Proceedings of netdev 0.1, Feb 14-17, 2015, Ottawa, On, Canada

value. So for example the prefix 192.168.1.0/24 would
match 192.168.1.1, but it will not match 192.168.2.1 as the
first 24 bits of the two values do not match.

In the 3.19 kernel, this was accomplished by performing
an xor of the search value and the current node's key. Then
the most significant bit of the difference between the two
was found using the __fls function. Finally, the resultant
value was then used to generate a mask so that the mask
could be used to check for any bits less significant or equal
to the mismatch in the node key.

 pref_mismatch = mask_pfx(cn->key ^ key, cn->pos);
 if (pref_mismatch) {
 /* fls(x) = __fls(x) + 1 */
 int mp = KEYLENGTH - __fls(pref_mismatch) - 1;

 if (tkey_extract_bits(cn->key, mp, cn->pos - mp) != 0)
 goto backtrace;

 if (current_prefix_length >= cn->pos)
 current_prefix_length = mp;
 }

Figure 2. Previous logic for determining prefix mismatch

To reduce the overhead of this call it is first necessary to
address the fact that the prefix mismatch depends on
finding set bits. To avoid false mismatches we need to
clear the unused bits of the tnode key. This is easily done
when a tnode is allocated by performing two shifts on the
key based on the pos and bits values. This step is not
necessary for a leaf as such an action was already being
performed as a part of the leaf allocation process. Once the
key has been prepared the process of determining if a
prefix mismatch has occurred is as simple as the one line
of code as seen in figure 3. This code works by generating
a mask based on the least significant bit in the node's key.
The result of a value OR'ed with the negative version of
itself will always provide a mask that starts at the least
significant set bit of the value. After that, it is a matter of
performing an XOR between the node key and the look-up
value to generate a delta and then preforming an AND of
the delta and mask to test for any differences that would be
in the prefix of the node key.

 if ((key ^ n->key) & (n->key | -n->key))
 goto backtrace;

Figure 3. New logic for determining prefix mismatch

Strip Bits from the Index Instead of the Key
In previous kernels, prefix matching was performed by

stripping bits from the child index via a “chopped_off”
count. This count tracked the number of bits that had been
stripped from the index value. This value was then fed into
a “current_prefix_length” value which was used to mask
the key during a search into nodes that could be a longest

prefix match. This code was simplified to consist of
“cindex &= cindex – 1” as this will always strip the least
significant bit from any value. The chopped_off and
current_prefix_length variables were dropped from the
longest prefix matching loop as they provided no actual
value once the update of cindex had been simplified.

Avoid Diving into Shallow Suffixes
The look-up time for a longest prefix match can approach
O(N2) due to the search for the variations on a given
look-up value with the least significant bits stripped.
However, in the case of many IPv4, routes they will share a
common prefix length of 24 or 16 [3]. This means that any
search after stripping any bit beyond the first 8 or 16 will
simply result in a failed look-up, or a look-up that will
need to back-trace to the default route.

A tracking value named slen has been added to the tnode
structure to avoid unnecessary look-ups. This value tracks
the length of the longest suffix or host identifier contained
within the given tnode. By tracking this value, it is then
possible to avoid back-tracing into nodes which do not
contain a longest prefix match. As a result, look-up times
are reduced from O(N2) to something approaching O(N).

Performance Evaluation
In order to evaluate the performance gains from these
changes a simple network was setup in which a VM
running on an Intel Core i7-4930K CPU running at
3.4Ghz. The VM was assigned an ixgbe network interface
and allocated a set of dummy interfaces. The IP addresses
of the ixgbe and dummy interfaces that received traffic
were configured so that they would exist in the deepest part
of the trie and have a significant number of bits set. This
created an environment that would allow for the maximum
amount of time spent in the prefix matching state. The
resulting trie had a maximum depth of seven for the local
trie and six for the main trie. The source and destination
addresses at the maximum depth within both tries.

Three different tests were conducted. The first was a
simple routing test which received packets from the ixgbe
port and routed them to one of the dummy ports. This
allowed for testing of two look-ups both of which failed on
the local trie, and then succeeded on the main trie. The
second test was a receive test in which the traffic from the
ixgbe port was received and then dropped locally. This
tested two look-ups on the local trie with one success, and
one look-up in the main trie with one success. The final
test was a transmit test in which packets were transmitted
to the dummy port from the stack and dropped there. This
consisted of one look-up in the local trie which failed, and
one look-up in the main trie with one success.

From the results in figure 4, we can see that the changes
have significantly reduced the look-up time as measured in
nanoseconds. Based on the data, we can derive the look-up
and back-trace time for both the 3.19-rc kernel and 3.20-rc
kernel. The times would appear to match the expected

Proceedings of netdev 0.1, Feb 14-17, 2015, Ottawa, On, Canada

models in which the time for look-up is in the 10s of
nanoseconds, while back-trace is in the 100s of
nanoseconds for the 3.19-rc kernel. For the 3.20-rc kernel
back-trace is only in the 10s of nanoseconds. This is
consistent with the transition from O(N2) to O(N) as
predicted.

Figure 4: Results of performance testing for initial changes

With the changes made so far, we have been able to
reduce the complexity for prefix matching from O(N2) to
O(N). While this helps to improve the performance, there
is still a significant amount of time spent on IPv4 look-up.
In the case of the test configuration, the look-up time is
still over 100ns per frame for routing and receive
workloads, and more than 70ns for transmit workloads.

Removing Leaf Info
One of the biggest reasons for fib_table_looup consuming
so much time is the amount of memory that must be
accessed. In the main look-up loop, as many as two
cache-lines are accessed per tnode, one per leaf, one per
leaf info, and one per FIB alias. One approach that can
help to reduce total overhead is to remove unnecessary
objects from the look-up path.

The leaf info object provides a mechanism for grouping
multiple FIB aliases that share a prefix length into a single
hash list. However, such a grouping is not common as
often there is only one alias per prefix length. There are no
functions that truly consider the leaf info when consuming
FIB aliases. It happens that the FIB alias structure has a
byte of free space that could be used to store a prefix
length value. In my test environment, it was found that
removing these objects and directly linking leaves to the
fib_alias hash resulted in a savings of up to 5ns per
look-up.

Wrap Pointers in Key Vector
For every pointer in the trie, with the exception of FIB
aliases, there is a key value pair that is associated with it.
This key is normally used to determine which of the
pointers to use, or if the next pointer should be used at all.
By wrapping all of the pointers in a key vector, it becomes
possible to treat the entire trie as one uniform structure,
including the root.

One change that was tested was to introduce the key
vector as seen in figure 5, and then encapsulate the trie
root, all tnodes, and the leaves so that all elements had a
key vector. An advantage to this is that it then becomes
possible to simplify insertion, deletion, and search as we
start with a key node instead of starting with NULL. As a
result, all tnodes will have a parent that is ultimately
represented by the trie root node. This allows for an
improvement of as much as 5ns per longest prefix match.
This is because it is possible to start prefix matching at the
root node, in which case we know there is no further work
to do without having to deference any additional pointers.

struct key_vector {
 union {
 struct hlist_head leaf;
 struct key_vector __rcu *tnode;
 };
 t_key key;
 unsigned char pos;
 unsigned char bits;
 unsigned char slen;
};

Figure 5: Key Vector Structure

The root node, tnodes, and leaves all must follow a
specific pattern so that they are recognizable by the
algorithm when being searched. In order to facilitate this,
there are several specific values that apply to each of the
node types:

• If pos + bits <= 32 and bits > 0, then the node is a
tnode

• If pos == 0 and bits ==0, then the node is a leaf
• If pos == 32 and bits == 0, then the node is a root

node

These properties lead to several interesting behaviors.
Since the root node has a position of 32, any key that is
compared against it will always be a prefix match. This
result in moving onto the child contained within node 0.
Any leaf will always perform a full prefix match during
look-up, and could be considered as a tnode with only one
child. The leaf will point to the FIB alias hash list as its
only child.

Up-level the Key Vector
The final opportunity for improvement is to up-level the
key vector from the individual nodes, into the level above

route
receive

transmit
lookup

prefix match

0
100
200
300
400
500
600
700
800
900

1000

3.19-rc

3.20-rc

P
ro

ce
ss

in
g

 T
im

e
 (

n
s)

Proceedings of netdev 0.1, Feb 14-17, 2015, Ottawa, On, Canada

it. Specifically, each node in the trie already contained a
key vector, and a key vector is 16B on 64b or 12B on 32b
systems, while a pointer is only 8B or 4B respectively. If
we were to modify the key vectors so that instead of
containing an array of pointers, they instead contained a
pointer to an array of key vectors, the result would be that
the key and key data for a given trie node or leaf would
actually be contained in the trie node one level above it.
This should result in as much as a 50% reduction in the
number of cache-lines that need to be accessed in a
look-up. It will also reduce the overall memory used, as a
leaf would require 32B on a 64b system, and a key vector
in the array would only require 16B due to coalescing the
RCU structures.

In implementing this, there were several issues
discovered. The key, pos, and bits field must be RCU
protected values to avoid possibly accessing an
out-of-bounds element within a child of the key vector
array. This results in the current implementation
experiencing an O(N2) insertion and deletion time. This is
because the parent of any new leaf or tnode must be
replaced if one of the protected values is changing. We
believe this can be reduced back to O(N) complexity and
may be resolved in the near future by simply replacing any
resized region as a single unit instead of as individual
parts.

In testing, several issues were encountered. Several
performance issues were found that needed to be addressed
in the original changes submitted to the kernel. It was
necessary to replace a shift of the index with a comparison
of a shifted mask instead. This allowed for a reduction in
the length of dependency chains within the main look-up
code. Once this was done, a reduction of up to 10ns per
look-up could be observed for the routing and receive
scenarios.

Figure 6: Results of incremental changes

Conclusions
As can be seen in figure 6, the initial round of changes
accepted into the 3.20-rc kernel still have a considerable
amount of room left for improvement. With the three
changes described earlier, it is possible to reduce
worst-case look-up times by as much as an additional 25%.

Further work is still needed as fib_table_lookup still
consumes a considerable amount of time compared to other
parts of the IPv4 network stack within the Linux kernel.
To improve beyond the current limits, a complete redesign
of the forwarding information base may be necessary as
the lower limits for the FIB table look-up are approaching
the L2 cache latency of the system. As a result further
code optimization may yield little to no gain.

Acknowledgments
We would like to thank Jamal Hadi Salim and the selection
committee for Netdev0.1 for inviting us to present and
submit this paper.

References
1. Stefan Nilsson, Matti Tikkanen, “Implementing a
dynamic compressed trie”, Proceedings WAE'98,
http://www.nada.kth.se/~snilsson/publications/Dynamic-tri
e-compression-implementation/text.pdf
2. Jun-Ichi Aoe, Katsushi Morimoto, Takashi Sato, “An
Efficient Implementation of Trie Structures”,
Software-Practice and Experience, Vol 22 (1992): 695-721
3. Jing Fu, OlofHagsand, Gunnar Karlsson “Improving
and Analyzing LC-Trie Performance for IP-Address
Lookup”, Journal of Networks, Vol 2, No 3 (2007): 18-27

Author's Biography
Alexander Duyck has worked as a Senior Software
Engineer at Red Hat, Inc since October of 2014 . There, he
works on improving the performance of the networking
subsystem within the Linux kernel. Prior to joining Red
Hat he had worked for seven years at Intel as a Senior
Software Engineer. There he helped to maintain and create
the Linux wired Ethernet drivers igb, ixgbe, and fm10k.

3.20-rc
Leaf Info

Key Vector
Up-Level

0

50

100

150

Route

Receive

Transmit

P
ro

ce
ss

in
g

 T
im

e
 (

n
s)

Proceedings of netdev 0.1, Feb 14-17, 2015, Ottawa, On, Canada

http://www.nada.kth.se/~snilsson/publications/Dynamic-trie-compression-implementation/text.pdf
http://www.nada.kth.se/~snilsson/publications/Dynamic-trie-compression-implementation/text.pdf

