
Rtnetlink dump filtering in the kernel

Roopa Prabhu

Cumulus Networks,
 Mountain View, CA, USA,

roopa@cumulusnetworks.com

Abstract
Rtnetlink dump handlers supported by the kernel are a useful way
to query state of the kernel network databases. Most rtnetlink
dump handlers return data for all network objects in the
corresponding networking subsystem databases today, e.g.
RTM_GETLINK returns data for all network interfaces in the
system. With no rtnetlink dump filtering support in the kernel, the
burden is on user-space to filter such dumps. This does not scale
on systems with a large number of network interfaces or large
routing databases. Such systems are not uncommon given that
Linux is being deployed on network switches, routers,
hypervisors and other devices in the data center today. Filtering in
user-space is not scalable. This paper looks at scalability
problems with rtnetlink dumps and discusses possible solutions to
filter such dumps in the kernel. We will look at a consistent way
to filter such dumps across all network object types using existing
infrastructure provided by the kernel.

Keywords
Netlink, Rtnetlink, iproute2

 Introduction
The Linux kernel netlink API is one of the main interfaces the
Linux kernel provides to user-space applications [3]. Most Linux
network applications today use netlink to talk to the kernel.
Rtnetlink is a netlink bus used by all kernel networking
subsystems including network interfaces, routing, fdb and
neighbour. Some kernel networking subsystems also provide
services on the generic netlink bus [2]. The Linux kernel
networking subsystems register handlers with Rtnetlink core with
a message type and family. For further details on Netlink families
and msg types see [1], [3], [4].

User-space applications can talk to a subsystem on the Rtnetlink
bus by using the corresponding family, msg type and attributes
with the socket API. Throughout the paper we refer to a network
subsystem entry as a 'networking object'. This can be a network
interface, a route, an address, a forwarding database (FDB) entry
or a neighbour table entry.

Rtnetlink handlers support the following message types today:
• RTM_NEW* to create or set networking attributes on a

network object
• RTM_DEL* to delete an object

• RTM_GET* to get an object or when used with
NLM_F_DUMP netlink flag dump the networking
subsystem database (eg all links)

Example message types supported for links [4]:
• RTM_NEWLINK to create or set attributes on a link
• RTM_DELLINK to delete a link
• RIM_GETLINK to get a link or dump the kernel link

database when NLM_F_DUMP flag is set

In this paper we focus on Rtnetlink dump handlers in the kernel
(RTM_GET* with NLM_F_DUMP). Rtnetlink dump handlers
are invoked when the user is requesting a dump of a kernel object
database (links, routes, fdb, neigh). We discuss Rtnetlink dumps
in the context of short lived and long running networking
applications:

• A short lived application requests a dump from the
kernel, processes dump entries and exits. e.g. an
application (like iproute2 [7]) polling for 'stale'
neighbour table entries to refresh them every 30s

• A long running application (or daemon) requests for a
dump from the kernel at startup to build a cache of
kernel objects. It then listens to notifications from the
kernel to update the cache and uses the cache as a copy
of the kernel database objects for further processing and
actions. e.g. a user-space hardware accelerating switch
driver [10], [11]

Problem
Most Rtnetlink dump handlers today dump the entire kernel
networking subsystem databases. e.g. address dump returns
addresses on all interfaces in the system. The application filters
these dumps in user-space. This does not scale well on systems
with large kernel network databases or large number of network
interfaces when all the user wants is addresses on one interface. A
short lived application requesting a dump from the kernel every
poll interval will suffer from parsing and processing large dumps.
e.g. in a system with thousands of neighbour table entries, a short
lived application looking for a few stale neighbour entries will
request a dump of the neighbour table from the kernel every poll
interval.

Proceedings of netdev 0.1, Feb 14-17, 2015, Ottawa, On, Canada

the below iproute command execution requires requesting the
kernel for a full dump of all interface details in the system and
then looking for eth0 in users-space

ip addr show dev eth0

showing all bridge interfaces in the system requires iproute2
#to get a dump of details of all interfaces in the system and
#filter bridge devices in user-space

ip link show type bridge

Kernel provides a few ways to dump efficiently or filter dumps in
the kernel in some cases:

• Netlink messages can be filtered in the kernel using BPF
socket filters at the socket level [6]

• Memory mapped IO can be used with netlink for better
performance and reduced overhead during dumps [8]

• Netlink attribute IFLA_EXT_MASK to indicate pre-
defined filter masks [12]

• Netlink messages can also be filtered using attributes
passed by the user in the incoming dump request message
[5]. This method is the focus of this paper. We propose
incremental improvements to this method covering all
networking subsystems.

In some cases the rtnetlink doit handler has been proven to be
useful to query a targeted object in the kernel as shown in [9].
In this paper we focus on filtering dumps using Netlink attributes
in the dump request message. The Linux kernel currently supports
required infrastructure to parse and filter dumps based on
incoming messages.

Related Work
Recent work in the bridge FDB area [5] supports filtering of FDB
entries in the kernel based on attributes in the dump request
message. The FDB filtering needs changes to extend it to filter by
other attributes of an FDB entry. This paper proposes an
implementation for these changes.

Rtnetlink dump filtering in the kernel
The next few sections will look at ways to provide consistent
dump filtering in kernel networking subsystems. This can be
achieved by making dump request message format consistent
with the corresponding RTM_NEW* or RTM_SET* message
format. This makes possible for filtering in kernel based on
similar attributes available during sets. This is implied in most
cases but in this paper we would like to call it out because the
format mismatch can break the ability to filter as it already has in
some cases in the kernel.

The following guidelines can be used to add or support filtering
of netlink dump requests in the kernel:

• Use the incoming dump request message as a filter
message

• The dump message format must be same as the
RTM_SET* or RTM_NEW* message

• Parse the incoming dump message into a filter of netlink
attributes

• Netlink filter attributes may need to be passed or cascaded
to subsequent subsystem handlers:

We will look at filtering in the kernel for the following dumps:
• Link dumps
• FDB dumps
• Neighbour table dumps
• Address dumps

Figure 1: Dump filtering in kernel (example shows filtering fdb
entries by vlan)

Link dumps
Rtnetlink Link dump handlers use RTM_GETLINK msg type and
IFLA_* attributes. Link dump filtering can be achieved by
enforcing a 'struct ifinfomsg' and IFLA_* attributes in the link
dump request message. The RTM_GETLINK dump handler in
the kernel can parse the incoming link attributes into a filter
structure and pass it to subsequent netdev getlink handlers.

Link dumps can be filtered on any fields in the incoming 'struct
ifinfomsg', like interface flags. They can also be filtered based on
the supported netlink attributes. e.g.,

• IFLA_GROUP to filter interfaces belonging to a group
• IFLA_MASTER to filter interfaces with a specific

master interface
• IFLA_LINK to filter logical interfaces with this

interface as the link

iproute2 examples showing filtering links

show all 'up' interfaces
ip link show up

Proceedings of netdev 0.1, Feb 14-17, 2015, Ottawa, On, Canada

show links with group test
ip link show group test

show links with master br0
ip link show master br0

show interfaces with link eth0
ip link show link eth0

FDB Dumps
Kernel forwarding database dumps are supported by most kernel
drivers maintaining a forwarding database. e.g. bridge and vxlan
drivers. FDB dump handlers use the RTM_*NEIGH msg type
with NDA_* attributes. FDB dump filtering can be achieved by
enforcing a 'struct ndmsg' and NDA_* attributes in the FDB
dump request messages. Bridge and vxlan FDB dumps can be
filtered on any of the below fields in 'struct ndmsg':

• ndm_state – sta of the entry (NUD_PERMANENT,
NUD_REACHABLE and others)

• ndm_type - type of entry (static or local)
• ndm_ifindex – interface the fdb entry points to

They can also be filtered based on any of the NDA_* netlink
neigh attributes:

• bridge fdb entries can be filtered based on the below
attributes:
• NDA_DST - filter by dst
• NDA_LLADDR - filter by addr
• NDA_VLAN - filter by vlan
• NDA_MASTER - filter by master interface index

• vxlan fdb entries can be filtered based on the below
attributes:
• NDA_DST filter by dst
• NDA_LLADDR filter by addr
• NDA_PORT filter by remote port
• NDA_VNI filter by vni id for vxlan fdb
• NDA_IFINDEX filter by remote port ifindex for

vxlan fdb

iproute2 example showing bridge fdb dump filtering

show fdb for bridge br0
bridge fdb show br br0

show fdb for bridge port eth0
bridge fdb show brport eth0

show static fdb entries
bridge fdb show static

show fdb entries with dst 172.16.20.1032.16.20.103

bridge fdb show dst 172.16.20.103

show fdb entries with vlan 10
bridge fdb show vlan 10

show vxlan fdb entries with vni 100
bridge fdb show vni 100

show vxlan fdb entries with remote port 4783
bridge fdb show port 4783

Neighbour table dumps
Neighbour tables dump handlers use the msg type
RTM_GETNEIGH and a subset of NDA_* attributes (similar to
FDB dumps described in the previous section). Neighbour table
entries can be filtered by fields in 'struct ndmsg':

• ndm_state (NUD_PERMANENT,
NUD_REACHABLE and others)

• ndb_type - neighbour entry type (static or local)

• ndm_ifindex – neighbour entry pointing to an
interface

iproute2 examples filtering neigh dumps

show reachable neigh entries
ip neigh show nud reachable

show permanent neigh entries
ip neigh show nud permanent

show stale neigh entries
ip neigh show nud stale

show neigh entries for dev eth0
ip neigh show dev eth0

Address dumps
Address dump handlers use the messag type RTM_GETADDR
and IFA_* attributes. RTM_GETADDR dump filtering can be
achieved by enforcing a 'struct ifaddrmsg' and IFA_* attributes in
the dump request messages. Address table entries can be filtered
on fields in 'struct ifaddrmsg':

• ifa_flags filter addresses with address flags
• ifa_scope filter address with given scope
• ifa_index dump addresses belonging to an interface

They can also be filtered based on the below netlink attributes:
• IFA_LABEL filter addresses with a given label
• IFLA_FLAGS filter on flags like permanent, dynamic,

secondary, primary

Proceedings of netdev 0.1, Feb 14-17, 2015, Ottawa, On, Canada

show addresses belonging to an interface

ip addr show dev eth0

Timing measurements on a system with 2000 interfaces with
addresses

Before: filtering in userspace

$time ip addr show dev eth0

3: eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu
1500 qdisc pfifo_fast state UP group default qlen 1000

link/ether 00:01:00:00:01:cc brd ff:ff:ff:ff:ff:ff

inet 192.168.0.15/24 brd 192.168.0.255 scope global eth0

valid_lft forever preferred_lft forever

real 0m0.060s

user 0m0.040s

sys 0m0.020s

After: filtering in kernel space

time ip addr show dev eth0
3: eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu
1500 qdisc pfifo_fast state UP group default qlen 1000
link/ether 00:01:00:00:01:cc brd ff:ff:ff:ff:ff:ff
inet 192.168.0.15/24 brd 192.168.0.255 scope global eth0
valid_lft forever preferred_lft forever

real 0m0.028s
user 0m0.004s
sys 0m0.020s

Conclusions
Filtered dump support in the kernel will benefit short lived
applications and will avoid the need for building netlink
caches in user-space for these applications. This paper
proposes a method to implement filtered dump support.

References

1. J. Hadi Salim, H. Khosravi, A. Kleen, A. Kuznetsov,
Linux Netlink as an IP Services Protocol, RFC 3549,
July 2003

2. Generic netlink: http://lwn.net/Articles/208755/
3. Pablo Neira Ayuso,Rafael M. Gasca, Laurent Lefevre.

Communicating between the kernel and user-space
Linux using Netlink sockets. Software: Practice and
Experience, 2010

4. Understanding and programming with Netlink sockets
http://people.redhat.com/nhorman/papers/netlink.pdf

5. Patch http://patchwork.ozlabs.org/patch/367086/
Filtering bridge fdb entries in the kernel by Jamal Hadi
Salim

6. Linux kernel BPF
https://www.kernel.org/doc/Documentation/networking
/filter.txt

7. iproute: advanced routing tools for Linux. Web pages
at:
http://www.linuxfoundation.org/collaborate/workgrou
ps/networking/iproute2.

8. Memory mapped IO with netlink:
https://www.kernel.org/doc/Documentation/networking
/netlink_mmap.txt

9. iproute2 patch, 'link dump filter', Roopa Prabhu
http://lists.openwall.net/netdev/2014/07/03/94

10. Cumulus Networks user-space hardware switching
daemon:
http://cumulusnetworks.com/product/architecture/

11. Open route cache: http://www.e-
side.co.jp/okinawaopendays/2014/document/12_Rob-
Sherwood.pdf

12. Patch IFLA_EXT_MASK support for a predefined
filtering mask info:
http://comments.gmane.org/gmane.linux.network/2207
70

Future Work
Explore other possible ways to improve dump filtering in the
kernel. Get time measurements with the BPF approach (which the
author was not able to provide in time for this paper).

Author Biography
Roopa Prabhu is a member of technical staff at Cumulus
Networks. At Cumulus she works on networking in the Linux
kernel and user-space, Network interface management and other
system infrastructure areas. Her previous experience includes
Linux clusters, ethernet drivers and Linux KVM virtualization
platforms. She has an MS in Computer Science from the
University of Southern California

Proceedings of netdev 0.1, Feb 14-17, 2015, Ottawa, On, Canada

http://lwn.net/Articles/208755/
http://www.e-side.co.jp/okinawaopendays/2014/document/12_Rob-Sherwood.pdf
http://www.e-side.co.jp/okinawaopendays/2014/document/12_Rob-Sherwood.pdf
http://www.e-side.co.jp/okinawaopendays/2014/document/12_Rob-Sherwood.pdf
http://cumulusnetworks.com/product/architecture/
http://lists.openwall.net/netdev/2014/07/03/94
https://www.kernel.org/doc/Documentation/networking/netlink_mmap.txt
https://www.kernel.org/doc/Documentation/networking/netlink_mmap.txt
http://www.linuxfoundation.org/collaborate/workgroups/networking/iproute2
http://www.linuxfoundation.org/collaborate/workgroups/networking/iproute2
https://www.kernel.org/doc/Documentation/networking/filter.txt
https://www.kernel.org/doc/Documentation/networking/filter.txt
http://patchwork.ozlabs.org/patch/367086/
http://people.redhat.com/nhorman/papers/netlink.pdf

