
Shaping the Linux kernel MPTCP implementation towards upstream
acceptance

Doru-Cristian Gucea, Octavian Purdila

Open Source Technology Center, Intel
Bucharest, Romania

{doru.gucea, octavian.purdila}@intel.com

Abstract
This paper describes the challenges that we face in trying to
integrate MultiPath TCP (MPTCP) in the official Linux kernel
repository. This is a non-trivial task because the MPTCP
implementation is invasive and mixes the MPTCP and TCP code
and thus substantially increases the complexity of Linux's kernel
TCP/IP implementation. In this paper we present several changes
done to the MPTCP implementation that move the MPTCP code
in a separate layer with the purpose of managing the complexity
of the kernel implementation. To do so a series of problems must
be solved: extract the MPTCP specific code from the TCP hot-
path, create an MPTCP specific layer on top of TCP, pass MPTCP
specific options to/from the TCP layer and have an efficient TCP
fallback mechanism.

Keywords
MultiPath TCP, TCP kernel structures, sub-flow, meta socket,
master socket.

 Introduction
MultiPath TCP (MPTCP) is a transport layer protocol
which takes advantage of today's Internet architecture
where multiple paths exist between endpoints. The
application uses a single TCP like socket with multiple
sub-flows being started in kernel-space for the same
connection. These sub-flows are implemented as normal
TCP connections and are completely transparent to the
application.
There are multiple benefits of MPTCP and probably the
most common is increased throughput (up to 300% in the
data center [1]). By using a coupled congestion control
algorithm [2], MPTCP achieves bottleneck fairness while
keeping the throughput improvements. It makes sure it
does not consume more bandwidth on a single link then a
typical TCP connection would and it also moves the traffic
away from the congested links as much as possible.
Another typical multi-path use-case is the now increasingly
present smart phone which has both a 3G and a Wi-Fi
network interface. The only choice offered by TCP is to
use a single path which flows either through the 3G or the
Wi-Fi interface. If the 3G connection drops and we decide
to use the Wi-Fi interface, there is a delay of about 350ms
only for scanning for nearby access points, without
considering the authentication and association delay. This
is a serious problem for Voice over IP (VoIP) applications
like Skype where delays over 250ms are unacceptable [3].

MPTCP solves this problem by starting two sub-flows, one
for each interface. In this way, by the time the 3G
connection drops, there is already a connection ready and
the handover time which includes the scanning,
authentication and association to the AP is eliminated.
Moreover, MPTCP can be set to use a sub-flow as a
backup path which is used only if there are no regular
paths available. Going back to the previous use-case, there
is the possibility to use the 3G interface as a backup one in
order to minimize the Internet usage costs.
A generalization of this handover use-case is the situation
where we want to use MPTCP to obtain the best possible
network experience in the case of significant variations of
the 3G and Wi-Fi signal quality. This is natural with
MPTCP by using two sub-flows, one for 3G and one for
Wi-Fi, because of the coupled congestion control.
MPTCP is helpful even when using just one physical Wi-Fi
interface. The Linux kernel has the option of creating
virtual network interfaces which are an abstract
representation of a computer network interface that may or
may not correspond directly to a physical network interface
[4]. In the Multi Wi-Fi project [5] a client continuously
scans for nearby access points and adds a new virtual
network interface every time a new AP is discovered. This
gives the possibility for MPTCP to open a new sub-flow
for each AP it sees. Besides the fact that there is no need
for handover, experiments also showed that the interactions
between MPTCP and L2 layer successfully managed the
hidden terminal situations [6], mainly because of the
coupled congestion control algorithm from MPTCP.
MPTCP can also greatly enhance VM migration between
two nodes as it allows the transport network connection to
remain open across layer 3 domains. On the first device
MPTCP will open a first sub-flow. After the VM is
migrated to a second device, MPTCP will open a second
sub-flow, with the new network configurations, all being
transparent to the applications [7].
MPTCP can also be used to optimize the energy
consumption on mobile devices. For example, transferring
data using a poor Wi-Fi connection has two important
characteristics: the interface stays on for a longer time and
the screen also stays on while downloading if the user
wants to view the content immediately. Using MPTCP, the
3G interface may be enabled for a short time to assist the
first connection if the additional energy consumed by 3G
will be less than the one used by the screen while waiting
for the slower connection to complete the task [8].

Proceedings of netdev 0.1, Feb 14-17, 2015, Ottawa, On, Canada

Current MPTCP implementation
MultiPath TCP is an improvement of the current
communication protocols, bringing forth a protocol that is
more flexible and adaptive to the existing environment
(e.g. available resources), provides an enhanced user
experience and doing so is transparent to applications.
Hence an implementation at the OS level makes sense and
as such there is an MPTCP implementation for the Linux
kernel that is maintained in an off-tree open-source
repository by the academic community.
Our aim is to bring the off-tree Linux kernel MPTCP
implementation in the official tree. We believe that doing
so will accelerate MPTCP adoption and that will allow the
above mentioned and probably other new and interesting
use-cases to enrich the user's experience.

Design of the original MPTCP implementation
The design of the original implementation was to
implement the MPTCP functionality directly at the TCP
layer. For example, new code is added in the TCP layer
that checks whether we are handling a simple TCP
connection or an MPTCP one and then takes appropriate
action.
The main MPTCP specific abstractions are: meta socket,
master socket and sub-flow socket. The meta socket is the
socket used for the management of the sub-flows and it is
visible to user-space applications. It is implemented as a
TCP socket although it does not have a direct mapping to a
network level TCP connection.
The sub-flow sockets correspond to a TCP connection at
the network level. They are also implemented as TCP
sockets but in addition they have MPTCP specific data
structures to deal with MPTCP options.
The master socket is a special type of sub-flow socket and
corresponds to the first sub-flow opened by the MPTCP
connection. In case the MPTCP connection fails at the
handshake phase, the implementation falls back to TCP. In
this case the master socket is used to keep an active
connection with the peer and is also the socket that it is
visible to user-space applications.
MPTCP employs a double level sequence number space:
one for the meta and one for the sub-flow. The first one,
used for the meta, starts at IDSN (Initial Data Sequence
Number) which is calculated using a pair of keys
exchanged during the handshake for the master-socket. The
second one, used for the sub-flow, starts at ISSN (Initial
Sub-flow Sequence Number) which is negotiated during
the handshake for that specific sub-flow and are basic TCP
sequence numbers. In order to map a segment between the
meta level and sub-flow level, the Data Sequence Signal
option (DSS) is used (Figure 1). This is an option inside
the TCP header and it has four fields: Data Sequence
Number (DSN) relative to IDSN, Sub-flow Sequence
Number (SSN) relative to ISSN, Length and Checksum.
DSS option maps each byte from kernel level to
application level by saying that Length bytes starting at

SSN+ISSN from the sub-flow level maps to DSN+ISDN at
meta-level.
The implementation is divided in several parts: MPTCP
handshake, the handling of MPTCP options, the “routing”
of MPTCP packets to meta, master or sub-flow sockets,
receiving and sending data between the sub-flow sockets
and meta socket, creating new sub-flows, scheduling
output data to sub-flows (path manager), congestion
control. Some of these parts are done directly at the TCP
layer and are invasive (e.g. MPTCP handshake, handling
MPTCP packets) while other parts are fairly well isolated
from the TCP code (e.g. path manager).

MPTCP handshake
We believe that the existing handshake for MPTCP is
complex mainly because the resources are allocated in a
late stage of this process. The allocation path for MPTCP
resources as done in the original implementation is
illustrated in Figure 3, left side.
The MPTCP handshake on the client side starts with
creating a normal TCP socket. Calling connect() in user-
space will trigger the sending of a packet having the SYN
and MP_CAPABLE (a specific MPTCP option) flags set,
then it blocks waiting for a packet with ACK and
MP_CAPABLE flags set. When the packet is received
from the IP layer, the interrupt handler, tcp_v4_rcv(), is
called and the packet is passed to the transport layer. If
tcp_rcv_synsent_state_process() finds the MP_CAPABLE
flag in the packet the path is redirected to MPTCP code for
allocation of specific resources. The socket that we used
until now for the communication with the server becomes
the meta socket and the master socket, which is the first
sub-flow of the connection, is created as a clone from the
meta socket by calling sk_clone_lock(), the basic function
from kernel which creates an identical copy of a socket.
The connection with the server will be “switched” from the
meta socket to the master socket, which means that from

Figure 1: Data Sequence Signal Option [10]

Proceedings of netdev 0.1, Feb 14-17, 2015, Ottawa, On, Canada

now on the meta socket will be used only for management
while the communication with the server will be done on
the master socket. This is the reason for creating the master
socket as clone, as the meta socket has connection state
available (such as ACK and SEQ numbers) to allow
communication with the peer. A common question about
this mechanism is why not build the master socket around
initial connection socket and create the management socket
using the sock_create_kern() function thus rendering the
clone operation unnecessary. The answer is that we can’t
change the socket the application talks with, so building
the master socket around the initial connection socket
would mean that the application talks only with the master
socket.
A similar flow happens on the server side as well. The
handshake starts with receiving a SYN and
MP_CAPABLE flag and that's the time when a minimal
representation of a socket, a request_sock is created. Upon
the receive of the final ACK and MP_CAPABLE flags a
full TCP socket is created as a clone of the TCP listener
socket and this is set as the meta socket. The master socket
is created as a clone after the meta socket (as is done on the
client side), in order to preserve the connection state. The
meta socket is returned to the application as a result of an
accept() system call.

MPTCP receive path
The kernel code for TCP uses several queues for storing
incoming TCP segments: backlog queue, prequeue queue,
receive queue and out-of-order queue [9, 12]. The usage of
these queues inside kernel is illustrated in Figure 2.
The receive queue contains processed segments, which
means that all protocol headers are stripped and data is
ready to be copied to the user application. The difference
between the receive queue and out-of-order queue is that
that in sequence packets are in the first one. The backlog
and prequeue queues contain unprocessed segments as they
are received from the IP layer. When a new packet is
received from the IP layer in tcp_v4_rcv() and the socket is
locked it will be put in the backlog queue. Otherwise, if the
socket is free and we have an application waiting, the
segments are put in the prequeue.
The original MPTCP implementation does not use the
backlog queue and the prequeue queues for sub-flows. All
the packets in tcp_v4_rcv() are put in the meta socket
backlog or prequeue queues. This is achieved by adding a
branch in the tcp_v4_rcv() that enqueues MPTCP packets
in the queues of the meta socket. Thus, the backlog queue
of the meta sockets contains all MPTCP packets from all
sub-flows.
This backlog queue is processed at the time the packet
arrived if the socket is not used by the application, or every
time the application releases the socket. Processing of the
backlog implies passing the SKB from the backlog to the
receive queue of the socket. However, in the original
MPTCP implementation, processing of the meta socket
backlog doesn't imply that the SKBs are put directly in the
receive queue of the meta socket. Instead, when the meta-

socket backlog is processed, they are first transferred in
receive queue of the sub-flow and later they are put in the
meta socket receive queue. The packets can be copied to
user space only after they had been put in the meta socket
receive queue.
Regarding the kernel code, the processing of the backlog is
triggered by release_sock(), when the socket is unlocked:
release_sock →...→sk->sk_backlog_rcv → tcp_v4_do_rcv
By passing the SKB and the socket which received that
SKB as parameters to tcp_v4_do_rcv(), we process the
packet and move it to the receive queue of the socket.
MPTCP modifies the sk_backlog_rcv such that it passes as
parameter the sub-flow socket which received that SKB,
instead of the meta socket as it would have happened with
no modifications. After the packets are enqueued in the
receive queue of the sub-flow, the sk_data_ready callback
is called. For TCP case this callback is used just for waking
up the application and signal it that we have data in the
receive queue. MPTCP also has to pass the SKBs from the
sub-flow to meta receive queue. The application will wake
up and tcp_recvmsg() will copy the data to the userspace
buffers.

MPTCP send path
The send path is split into two separate actions: scheduling
the data to be sent on one of the sub-flows and the actual
sending operation. The first part is mostly done in the path
manager which has a modular architecture that allows
multiple implementations for MPTCP scheduling modules
(e.g. fullmesh, ndiffports, etc.).
The second part deals with splitting the meta socket
queued data into segments and adding the MPTCP specific
information – Data Sequence Signal (DSS) to them. It also
deals with retransmissions, and here things become

Figure 2: TCP queues [12]

Proceedings of netdev 0.1, Feb 14-17, 2015, Ottawa, On, Canada

complex, as we might need to retransmit a segment on a
different sub-flow which might require changing the DSS
associated with the segment.
Since the DSS information must be stored in the TCP
header as options and as the options are written off in the
header long after the segment is created, the DSS must be
stored somewhere in the SKB. One option would be to use
the TCP SKB control block which is an opaque storage
area usable by protocols, and even some drivers, to store
private per-packet information [11]. The problem is that
this space is limited, so the approach taken is to store it in
the data section of the SKB, in the space reserved for the
TCP header. This also has drawbacks as each time a TCP
packet is copied so that is header is modified (via
pskb_copy()) - for example when a packet is prepared to
be sent on the wire and its the TCP header must be added,
the DSS options must also be copied and that requires
changes in the TCP stack.
The MPTCP send path is fairly well isolated from the rest
of the TCP stack and it relies on hooks in the
tcp_write_xmit function. This function is called when there
is enough space in the send window and it sends the packet
to the IP layer.

MPTCP implementation alternatives
As it can be seen from the previous section the original
MPTCP implementation is probably the most flexible
approach and can arguably offer the best performance but
at the cost of increased complexity in the TCP stack.
An alternative would be to implement MPTCP in
userspace. However, a complete userspace implementation
would require implementing a duplicate TCP stack since
MPTCP relies on a TCP stack being present. If an MPTCP
userspace implementation is to be successful we believe
that it needs to be able to use the existing kernel TCP stack.
This would require changes to the TCP stack so that we
can send and receive MPTCP options like MP_CAPABLE,
MP_JOIN, DSS, ADD_ADDRESS, etc. These options
could be passed as control messages (also known as
ancilary data - data that is not part of the payload) to/from
userspace using sendmsg() or recvmsg(). For the other
system calls where we need to pass or receive options,
such as connect() and accept(), we can probably rely on
setsockopt() and getsockopt() to schedule options to be
sent or to receive options. However, we also need to pass
options during the connection handshake on the server
side: get the options from the SYN request and pass
options to the SYN,ACK response. With this, and probably
other issues to be found in the details of the current
MPTCP implementation, an equivalent of a FUSE [14] like
solution for networking is probably required if we are to be
successful in creating a userspace implementation for
MPTCP.
Another alternative is to try to manage the complexity of
an MPTCP implementation in the kernel by moving the
MPTCP code in a separate layer that sits on top of the TCP
layer. Create a new socket family that will implement the

MPTCP logic and use plain TCP sockets for sub-flows.
The sub-flow sockets can be manipulated with standard
kernel level API such as tcp_read_sock(),
sock_create_kern(), kernel_sendpage() / kernel_sendmsg()
or tcp_write_xmit(). The MPTCP options can be passed
through either the TCP SKB control block, through control
messages or by passing another parameter to
kernel_sendpage(). In this approach one problem is how to
handle the fallback to TCP. The simple solution is to make
the MPTCP layer act as a middle man but more lightweight
solutions that switch the user visible socket from the
MPTCP socket to the sub-flow socket at the file level may
be possible.

MPTCP upstreaming process evolution
Our upstream work is split in two directions: a cleanup part
where we separate the MPTCP code from the TCP code
and a refactoring part where we build a new layer for
MPTCP operations and bring this layer a level up above
the TCP layer.

Isolate MPTCP code
With the purpose of separating the MPTCP and TCP layers
in mind, we noticed that a lot of the MPTCP code added
relied on a few conditions that differentiated the two
layers: if the current socket was a meta socket, if the other
end was MPTCP-capable or if the current socket is a
master socket.
This means that, inside the TCP code, when one of the
conditions above was true, the flow would be passed to an
MPTCP function. We managed to remove these conditional
statements by doing the following: for each condition that
could pass the control from TCP to MPTCP functions,
create a suite of functions pointers in the tcp_sock kernel
data structure, each pointer corresponding to a place where
that condition would be checked. Afterwards, whenever
that flag/condition changed its value (true → false or false
→ true), change the function pointer in tcp_sock to its TCP
or MPTCP function. More accurate, the tcp_sock_ops
structure inside the tcp_sock structure contains a list of
function pointers: select_window, init_buffer_space,
set_rto, write_xmit, write_wakeup and others. This object-
oriented design approach offers the possibility to initialize
the function pointers once and remove the conditional
statements. For example the call
tp→ops→select_initial_window may call either
mptcp_select_initial_window or tcp_select_initial_window
based on the initial assignment to select_initial_window
function pointer. This way, we removed all the conditional
statements and replace them with calls to the function
pointers placed in tcp_sock. One concern that we initially
had was the overhead that might be introduced by the
locking scheme: each time we called or changed one of the
function pointers, the socket containing it must have had its
lock held. This turned out to not be a problem due to the
fact that the socket was already locked by the upper levels.
This locking scheme is the reason why we added these

Proceedings of netdev 0.1, Feb 14-17, 2015, Ottawa, On, Canada

function pointers to tcp_sock and not in a separate
structure; if we would have grouped them in a separate
structure, then the upper stack levels wouldn't have had
already taken care of the locking and we would have added
an overhead that could be avoided. As far as performance
goes, we noticed a slightly, but steadily increased
throughput after applying the above mentioned changes.
The next step in separating the layers was to create a new
level of indirection by grouping the suite of functions
pointers based on the type of socket: functions for a default
TCP socket, functions for a sub-flow socket and, finally,
functions for the meta socket. A normal TCP socket is
created using the default group of functions. If this socket
becomes MPTCP capable, the functions for sub-flow type
will be assigned to it and all future code will call specific
sub-flow functions. Also, a switch between these functions
is done in case of a fallback.
In order to isolate the MPTCP code even more, we created
MPTCP specific request sockets as well as connection
request operations. This allowed us to reduce request_sock
to its original size. It also allowed us to remove the
MPTCP code from the TCP stack part that deals with
accepting new connections (tcp_v4_conn_request() and
tcp_v6_conn_request()) since we can now parse the
MPTCP options and do the MPTCP checks in the MPTCP
specific connection request operations after which we can
call the TCP specific connection request operations. As a
generalization of these changes we also removed code
duplication between IPv4 and IPv6 connection request
functions. This independent changes were positively

received by the Linux kernel networking community and
they were merged upstream.
Another change that we did was to simplify the DSS
handling: save part of DSS options (and compute the rest
dynamically when writing the TCP header) in the TCP
SKB control block when queuing a packet to a sub-flow.
This allowed us to remove the code that explicitly copies
the DSS block each time an SKB is copied. In order to fit
in the control block we had to use a double union: once
with the inet_skb_parm / inet6_skb_parm union – these
two are only used on the receive path, and once with
MPTCP 's path_mask - the mask is not used after queuing
the packet to the sub-flow.

Dedicated MPTCP layer
We started implementation of a new protocol,
IPPROTO_MPTCP that represent the MPTCP protocol.
This way, we can implement MPTCP specific operations
cleanly and separately from the TCP layer. Following this
design, meta socket is created as soon as the socket is
created. This is a special IPPROTO_MPTCP socket. The
meta socket is visible to the application level and the
MPTCP code will create sub-flows sockets that will simply
be IPPROTO_TCP sockets, just like in a regular TCP
connection as described in RFC 6824. However, these sub-
flows are different from a regular TCP sockets by the extra
MPTCP options that it encloses. These are the only
changes to the TCP sockets that we cannot separate from
the TCP layer. The rest of the MPTCP implementation is
moved an upper level that will communicate with the TCP
layer. In this way we have a clear separation between the
TCP operations represented by the functions from tcp_prot
structure and MPTCP operations from mptcp_prot
structure. We have total freedom to write our own
operations for MPTCP without worrying of mixing code.
With this approach, the application needs to specifically
open an MPTCP connection. However, it should be
possible to redirect TCP socket creation calls to MPTCP
socket creation calls in inet_create(), based on, for
example, sysfs settings. It also means that fallback to TCP
must be handled inside the MPTCP layer itself by
forwarding calls from the MPTCP layer to the TCP layer.
The IPPROTO_* constants generally match what is put on
the wire inside the IP header. In the first phase
we chose number 7 for the new protocol and that it did not

Figure 4: Connect path. Before (left side) and after (right side)
code refactoring.

Figure 3: Path for the allocation of the meta and master socket.
Before (left side) and after (right side) code refactoring.

Proceedings of netdev 0.1, Feb 14-17, 2015, Ottawa, On, Canada

match well with this convention, since this number was
already used by another IANA protocol, CBN. Based on
community feedback we later switched to define it using a
bit mask approach, IPPROTO_TCP | TCPEXT_MPTCP.
Regarding the kernel data structures, the new layer
operations are implemented in the mptcp_prot structure
and are specific to the meta socket. The sk_prot field from
the sock structure of the meta socket points to this data
structure. Using this approach we preserve the object-
oriented design of the Linux kernel.

Early allocation of MPTCP resources
Starting with an MPTCP connection by default and
allocating specific resources for it from the beginning gives
us the possibility to make a clear separation between the
master socket and the meta socket and remove the need for
cloning the meta socket. Using the new approach we can
create the MPTCP data structures by the time the socket()
function is called in user space as it is illustrated in figure
3, right side. After the application calls socket(), requesting
for IPRPROTO_MPTCP the control is passed to
inet_create() in kernel space which calls sk → sk_prot →
init(). Depending on the protocol used, the sk_prot field
from socket points to a specific set of functions.
mptcp_v4_init_sock() is an MPTCP specific function
where we allocate the master socket, an IPPROTO_TCP
socket, and the meta socket, an IPPROTO_MPTCP socket.
These sockets are created using the sock_create_kern()
function from kernel without the need to replicate an active
connection because we don’t have one yet.

Simplified connect path
We also modified the connect path as can be seen in figure
4, right side. The application calls connect() in user­space
using the meta socket. The difference now is that the
sk_prot field is initialized to the mptcp_prot structure and
instead of calling tcp_v4_connect() we call
mptcp_v4_connect which is MPTCP specific. We can
access the master socket because the function receives the
meta socket as a parameter and this management socket
encapsulates all the sub­flows. After extracting the master
socket we can use it in order to establish a connection with
the server using a regular TCP function: tcp_v4_connect().

New receive path
When we started the work for the receive path we noticed
that there is some MPTCP code in the tcp_v4_rcv() related
to the handling of queues. Of course that we would like to
remove it, but that will cause MPTCP packets to go in the
prequeue and backlog of the sub-flows. We would then
need a way to move the data from the sub-flow sockets to
the meta socket. Our work for the receive path is still in
progress but the idea is illustrated in Listing 1. The pseudo
code has two main parts: mptcp_recvmsg() which is a pure
MPTCP function specific to the meta socket, and the
sk_data_ready callback, a modified version for waking up
the application. When the application tries to read data, a

call to mptcp_recvmsg() will be triggered and the
application will wait for data using a wait-queue. It will be
woken up by sk_data_ready() when there is data in the
receive queue of the sub-flow. We also use a 32 bit mask
for marking the sub-flow which has ready data. Every bit
from this mask identifies one of the 32 sub-flows (this is
the maximum number of sub-flows in the current
implementation).
The processing of the backlog queue for the sub-flows will
be done in the release_sock() function as is done in normal
TCP. Note that the prequeue is not going to be used for
MPTCP as sub-flows are not being directly visible to
userspace.
In order to pass the data from the sub-flow level to the
meta level we are using tcp_read_sock(), a standard kernel
API – or at least used by other important users such as
NFS, CIFS, etc. tcp_read_sock() iterates through the sub-
flow receive queue, extracts an SKB, calls a helper
function (recv_actor) on that SKB then unlinks and frees
the SKB. The helper function is received as a parameter for
tcp_read_sock and this allowed us to fill it with code which
enqueues a clone of the SKB from the sub-flow receive
queue to meta receive queue. Unlinking the packet is done
after the call to the helper function so our code is not
allowed to remove it. That's the reason for using a clone in
the helper function: an SKB can't be in more than one
queue at a time.
One issue that we had in integrating tcp_read_sock() was
that not all the SKBs from the receive queue had the DSS
mapping so we couldn't enqueue the packet in the meta
receive queue. A DSS option for a given packet may be
present in subsequent packets due to middle-boxes that
coalesce packets and drop the MPTCP options [13].
Because of that we have to scan the receive queue and
detect the DSS mapping before unblocking the meta
socket's mptcp_recvmsg(). We can do that in the
mptcp_sk_data_ready callback function.
For passing data to user space we use tcp_recvmsg() in
order to avoid duplicating the code for copying data to user
space.

mptcp_recvmsg (on meta socket)
 wait_event(wq, ready_sub-flows)
 for all ready sub-flows
 lock sock(sub-flow)
 tcp_read_sock(sub-flow) – recv actor
 clone SKB and add to meta socket
 clear sub-flow ready bit
 release_sock(sub-flow)

 tcp_recvmsg (meta socket, O_NONBLOCK)

sk_data_ready (on sub-flow sockets)
 scan the receive queue and update DSS mapping
 mark sub-flow ready and wake-up meta socket

Listing 1: Redesigned receive path

Proceedings of netdev 0.1, Feb 14-17, 2015, Ottawa, On, Canada

Conclusions and future work
The work that we've done until know demonstrates that
upstreaming a network protocol is not an easy task. The
work that prepares MPTCP for upstreaming started with
separating the TCP layer from the MPTCP layer, continued
with the creation of a new abstraction layer above TCP
where we can define our own MPTCP specific operations
and reached a point where we redesign the receive path.
We managed to make the code clear by removing
conditional statements using function pointers, rework the
DSS handling to remove extract MPTCP code from the
TCP layer, rework the connection hand-shake by using
MPTCP specific request and connect operations that
allowed us to isolate MPTCP code and remove duplicated
TCP code from MPTCP code, and exposed an MPTCP
specific API to the application that allows us to make a
clear distinction between TCP operations and MPTCP
operations.
As future work, with the changes that expose the meta
sockets separatly from the TCP layer, we can rework the
send path and avoid the hook in the TCP layer. Instead of
doing the scheduling in tcp_write_xmit() at the TCP level
we can do it in sendmsg() at the meta socket level.
We are also looking to see if we can improve the
performance in the case MPTCP fallbacks to TCP by
eliminating completely the MPTCP layer in this case. This
could be done by switching the user visible socket from the
MPTCP socket to the TCP socket at the struct socket level.
One side effect of the switch is that we might have the
switching done while a process is waiting for an event on
the old socket (e.g. create the socket, do a non-blocking
connect and then do a recvmsg). We can avoid this issue by
waking up the socket and restarting the system call. This
should be feasible to implement since all socket blocking
operations seems to use the sk_wq waiting queue which
makes it fairly simple to wake-up the socket for a wide
range of blocking conditions.

Acknowledgements
The authors would like to acknowledge Andrei Maruseac,
Mihai Andrei, Cristina Ciocan, Irina Tirdea, George
Milescu and Gregory Detal who have contributed with
patches and ideas to the work described in this paper. We
especially like to thank Christoph Paasch for the invaluable
feedback and the relentless patch reviews.

References
1. Costin Raiciu, Sebastien Barre, Christopher Pluntke, Adam
Greenhalgh, Damon Wischik, Mark Handley, Improving
Datacenter Performance and Robustness with Multipath TCP, in
proceedings of SIGCOMM 2011
2. Costin Raiciu, M. Handly, D. Wischik, RFC6356 Coupled
Congestion Control for Multipath Transport Protocols
3. Ishwar Ramani, Stefan Savage, SyncScan: Practical Fast
Handoff for 802.11 Infrastructure Networks, INFOCOM05
4. Virtual Network interface, Wikipedia, accesed on January 20
2015, http://en.wikipedia.org/wiki/Virtual_network_interface
5. Andrei Croitoru, Dragos Niculescu and Costin Raiciu, Towards
Wifi Mobility without Fast Handover, Usenix NSDI 2015
6. Mauro Borgo, Andrea Zanella, Paola Bisaglia, Simone Merlin:
Analysis of the hidden terminal effect in multi-rate IEEE 802.11b
networks
7. Fikirte Abebe Teka, Seamless Live Virtual Machine Migration
for Cloudlet Users with Multipath TCP, Master Thesis
8. Costin Raiciu, Dragos Niculescu, Marcelo Bagnulo, Mark
Handley, Opportunistic Mobility with Multipath TCP
9. Sammer Seth, M. Ajaykumar Venkatesulu, TCP/IP Arhitecture,
Design and Implementation in Linux.
10. Christoph Paasch, Phd. Thesis: Improving Multipath TCP
11. How skbs work: http://vger.kernel.org/~davem/skb.html,
accesed on January 20 2015
12. W. Wu, M. Crawford, The performance analysis of Linux
networking – packet receiving
13. Costin Raiciu, Christoph Paasch, Sebastien Barre, Alan Ford,
Michio Honda, Fabien Duchene, Olivier Bonaventure, Mark
Handley: How Hard Can It Be? Designing and Implementing a
Deployable Multipath TCP
14. FUSE Filesystem in Userspace: http://fuse.sourceforge.net/,
accesed on January 20 2015

Authors Biographies
Doru­Cristian Gucea graduated University Politehnica of
Bucharest and is working at Intel as a Software Engineer in
the Open Source Technology Center group. Octavian
Purdila is a Software Architect at Intel in the Open Source
Technology Center group. He is also teaching OS internals
at the University Politehnica of Bucharest.

Proceedings of netdev 0.1, Feb 14-17, 2015, Ottawa, On, Canada

http://en.wikipedia.org/wiki/Virtual_network_interface
http://fuse.sourceforge.net/
http://vger.kernel.org/~davem/skb.html
https://www.usenix.org/conference/nsdi15

