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Abstract
This  paper  describes  the  challenges  that  we  face  in  trying  to
integrate MultiPath TCP (MPTCP) in the official  Linux kernel
repository.  This  is  a  non-trivial  task  because  the  MPTCP
implementation is invasive and mixes the MPTCP and TCP code
and thus substantially increases the complexity of Linux's kernel
TCP/IP implementation. In this paper we present several changes
done to the MPTCP implementation that move the MPTCP code
in a separate layer with the purpose of managing the complexity
of the kernel implementation.  To do so a series of problems must
be solved: extract the MPTCP specific code from the TCP hot-
path, create an MPTCP specific layer on top of TCP, pass MPTCP
specific options to/from the TCP layer and have an efficient TCP
fallback mechanism.
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 Introduction
MultiPath  TCP  (MPTCP)  is  a  transport  layer  protocol
which  takes  advantage  of  today's  Internet  architecture
where  multiple  paths  exist  between  endpoints.  The
application  uses  a  single  TCP like  socket  with  multiple
sub-flows  being  started  in  kernel-space  for  the  same
connection.  These  sub-flows  are  implemented  as  normal
TCP connections  and  are  completely  transparent  to  the
application. 
There are multiple benefits  of MPTCP and probably the
most common is increased throughput (up to 300% in the
data  center  [1]).  By using  a  coupled  congestion  control
algorithm [2], MPTCP achieves bottleneck fairness while
keeping  the  throughput  improvements.  It  makes  sure  it
does not consume  more bandwidth on a single link then a
typical TCP connection would and it also moves the traffic
away from the congested links as much as possible.
Another typical multi-path use-case is the now increasingly
present  smart  phone  which  has  both  a  3G and  a  Wi-Fi
network interface.  The only choice offered by TCP is to
use a single path which flows either through the 3G or the
Wi-Fi interface. If the 3G connection drops and we decide
to use the Wi-Fi interface, there is a delay of about 350ms
only  for  scanning  for  nearby  access  points,  without
considering the authentication and association delay. This
is a serious problem for Voice over IP (VoIP) applications
like Skype where delays over 250ms are unacceptable [3].

MPTCP solves this problem by starting two sub-flows, one
for  each  interface.  In  this  way,  by  the  time  the  3G
connection drops, there is already a connection ready and
the  handover  time  which  includes  the  scanning,
authentication  and  association  to  the  AP  is  eliminated.
Moreover,  MPTCP  can  be  set  to  use  a  sub-flow  as  a
backup  path  which  is  used  only  if  there  are  no  regular
paths available. Going back to the previous use-case, there
is the possibility to use the 3G interface as a backup one in
order to minimize the Internet usage costs.
A generalization of this handover use-case is the situation
where we want to use MPTCP to obtain the best possible
network experience in the case of significant variations of
the  3G  and  Wi-Fi  signal  quality.  This  is  natural  with
MPTCP by using two sub-flows, one for 3G and one for
Wi-Fi, because of the coupled congestion control.
MPTCP is helpful even when using just one physical Wi-Fi
interface.  The  Linux  kernel  has  the  option  of  creating
virtual  network  interfaces  which  are  an  abstract
representation of a computer network interface that may or
may not correspond directly to a physical network interface
[4].  In  the Multi  Wi-Fi  project  [5]  a  client  continuously
scans  for  nearby  access  points  and  adds  a  new  virtual
network interface every time a new AP is discovered. This
gives the possibility for MPTCP to open a new sub-flow
for each AP it sees. Besides the fact that there is no need
for handover, experiments also showed that the interactions
between MPTCP and L2 layer successfully managed the
hidden  terminal  situations  [6],  mainly  because  of  the
coupled congestion control algorithm from MPTCP.
MPTCP can also greatly enhance VM migration between
two nodes as it allows the transport network connection to
remain open across layer 3 domains.  On the first  device
MPTCP  will  open  a  first  sub-flow.  After  the  VM  is
migrated to a second device, MPTCP will open a second
sub-flow, with the new network configurations, all being
transparent to the applications [7].
MPTCP  can  also  be  used  to  optimize  the  energy
consumption on mobile devices. For example, transferring
data  using  a  poor  Wi-Fi  connection  has  two  important
characteristics: the interface stays on for a longer time and
the  screen  also  stays  on  while  downloading  if  the  user
wants to view the content immediately. Using MPTCP, the
3G interface may be enabled for a short time to assist the
first connection if the additional energy consumed by 3G
will be less than the one used by the screen while waiting
for the slower connection to complete the task [8].

Proceedings of netdev 0.1, Feb 14-17, 2015, Ottawa, On, Canada



Current MPTCP implementation
MultiPath  TCP  is  an  improvement  of  the  current
communication protocols, bringing forth a protocol that is
more  flexible  and  adaptive  to  the  existing  environment
(e.g.  available  resources),  provides  an  enhanced  user
experience  and  doing  so  is  transparent  to  applications.
Hence an implementation at the OS level makes sense and
as such there is an MPTCP implementation for the Linux
kernel  that  is  maintained  in  an  off-tree  open-source
repository by the academic community.
Our  aim  is  to  bring  the  off-tree  Linux  kernel  MPTCP
implementation in the official tree. We believe that doing
so will accelerate MPTCP adoption and that will allow the
above mentioned and probably other new and interesting
use-cases to enrich the user's experience.

Design of the original MPTCP implementation
The  design  of  the  original  implementation  was  to
implement the  MPTCP functionality directly at the TCP
layer. For example,  new code is added in the TCP layer
that  checks  whether  we  are  handling  a  simple  TCP
connection or an MPTCP one and then takes appropriate
action.
The main MPTCP specific abstractions are: meta socket,
master socket and sub-flow socket. The meta socket is the
socket used for the management of the sub-flows and it is
visible to user-space applications. It  is implemented as a
TCP socket although it does not have a direct mapping to a
network level TCP connection.
The sub-flow sockets correspond to a TCP connection at
the  network  level.  They  are  also  implemented  as  TCP
sockets  but  in  addition  they  have  MPTCP specific  data
structures to deal with MPTCP options.
The master socket is a special type of sub-flow socket and
corresponds to the first  sub-flow opened by the MPTCP
connection.  In  case  the  MPTCP connection  fails  at  the
handshake phase, the implementation falls back to TCP. In
this  case  the  master  socket  is  used  to  keep  an  active
connection with the peer and is also the socket that it  is
visible to user-space applications.
MPTCP employs a double level  sequence number space:
one for the meta and one for the sub-flow. The first one,
used for the meta,  starts at  IDSN (Initial  Data Sequence
Number)  which  is  calculated  using  a  pair  of  keys
exchanged during the handshake for the master-socket. The
second one, used for the sub-flow, starts at ISSN (Initial
Sub-flow Sequence  Number)  which  is  negotiated  during
the handshake for that specific sub-flow and are basic TCP
sequence numbers. In order to map a segment between the
meta level and sub-flow level, the Data Sequence Signal
option (DSS) is used (Figure 1). This is an option inside
the  TCP  header  and  it  has  four  fields:  Data  Sequence
Number  (DSN)  relative  to  IDSN,   Sub-flow  Sequence
Number (SSN) relative to ISSN, Length and Checksum.
DSS  option  maps  each  byte  from  kernel  level  to
application  level  by  saying  that  Length  bytes  starting at

SSN+ISSN from the sub-flow level maps to DSN+ISDN at
meta-level. 
The implementation is  divided  in  several  parts:  MPTCP
handshake, the handling of MPTCP options, the “routing”
of MPTCP packets  to  meta,  master  or  sub-flow sockets,
receiving and sending data between the sub-flow sockets
and  meta  socket,  creating  new  sub-flows,  scheduling
output  data  to  sub-flows  (path  manager),  congestion
control. Some of these parts are done directly at the TCP
layer and are invasive (e.g. MPTCP handshake, handling
MPTCP packets) while other parts are fairly well isolated
from the TCP code (e.g. path manager).

MPTCP handshake
We believe  that  the  existing  handshake  for  MPTCP  is
complex mainly because the resources are allocated in a
late stage of this process. The allocation path for MPTCP
resources  as  done  in  the  original  implementation  is
illustrated in Figure 3, left side.
The  MPTCP  handshake  on  the  client  side  starts  with
creating a normal TCP socket.  Calling  connect() in user-
space will trigger the sending of a packet having the SYN
and MP_CAPABLE (a specific MPTCP option) flags set,
then  it  blocks  waiting  for  a  packet  with  ACK  and
MP_CAPABLE  flags  set.  When  the  packet  is  received
from the  IP layer,  the  interrupt  handler,  tcp_v4_rcv(),  is
called and the packet  is  passed to  the transport  layer. If
tcp_rcv_synsent_state_process() finds the MP_CAPABLE
flag in the packet the path is redirected to MPTCP code for
allocation of specific resources.  The socket that we used
until now for the communication with the server becomes
the meta socket and the master socket, which is the first
sub-flow of the connection, is created as a clone from the
meta socket by calling sk_clone_lock(), the basic function
from kernel  which creates an identical copy of a socket.
The connection with the server will be “switched” from the
meta socket to the master socket, which means that from

Figure 1: Data Sequence Signal Option [10]
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now on the meta socket will be used only for management
while the communication with the server will be done on
the master socket. This is the reason for creating the master
socket as clone, as the meta socket  has connection state
available  (such  as  ACK  and  SEQ  numbers)  to  allow
communication with the peer. A common question about
this mechanism is why not build the master socket around
initial connection socket and create the management socket
using the  sock_create_kern() function thus rendering the
clone operation unnecessary. The answer is that we can’t
change the socket  the application talks with,  so building
the  master  socket  around  the  initial  connection  socket
would mean that the application talks only with the master
socket.
A similar  flow happens  on  the server  side  as  well.  The
handshake  starts  with  receiving  a  SYN  and
MP_CAPABLE flag and that's the time when a minimal
representation of a socket, a request_sock is created. Upon
the receive of the final ACK and MP_CAPABLE flags a
full TCP socket is created as a clone of the TCP listener
socket and this is set as the meta socket. The master socket
is created as a clone after the meta socket (as is done on the
client side), in order to preserve the connection state. The
meta socket is returned to the application as a result of an
accept() system call.

MPTCP receive path
The kernel code for TCP uses several queues for storing
incoming TCP segments: backlog queue, prequeue queue,
receive queue and out-of-order queue [9, 12]. The usage of
these queues inside kernel is illustrated in Figure 2. 
The  receive  queue  contains  processed  segments,  which
means  that  all  protocol  headers  are  stripped  and  data  is
ready to be copied to the user application. The difference
between the receive queue and out-of-order queue is that
that in sequence packets are in the first one.  The backlog
and prequeue queues contain unprocessed segments as they
are  received  from the  IP layer.  When a  new packet  is
received from the IP layer in tcp_v4_rcv() and the socket is
locked it will be put in the backlog queue. Otherwise, if the
socket  is  free  and  we  have  an  application  waiting,  the
segments are put in the prequeue.  
The  original  MPTCP  implementation  does  not  use  the
backlog queue and the prequeue queues for sub-flows. All
the  packets  in  tcp_v4_rcv() are  put  in  the  meta  socket
backlog or prequeue queues. This is achieved by adding a
branch in the  tcp_v4_rcv() that enqueues MPTCP packets
in the queues of the meta socket. Thus, the backlog queue
of the meta sockets contains all MPTCP packets from all
sub-flows.
This  backlog  queue  is  processed  at  the  time  the  packet
arrived if the socket is not used by the application, or every
time the application releases the socket. Processing of the
backlog implies passing the SKB from the backlog to the
receive  queue  of  the  socket.  However,  in  the  original
MPTCP implementation,  processing  of  the  meta  socket
backlog doesn't imply that the  SKBs are put directly in the
receive queue of the meta socket. Instead, when the meta-

socket  backlog is  processed,  they are first  transferred  in
receive queue of the sub-flow and later they are put in the
meta socket receive queue. The packets can be copied to
user space only after they had been put in the meta socket
receive queue.
Regarding the kernel code, the processing of the backlog is
triggered by release_sock(), when the socket is unlocked:
release_sock →...→sk->sk_backlog_rcv → tcp_v4_do_rcv
By passing the SKB and the socket  which received that
SKB  as  parameters  to  tcp_v4_do_rcv(),  we  process  the
packet  and  move  it  to  the  receive  queue  of  the  socket.
MPTCP modifies the sk_backlog_rcv such that it passes as
parameter the sub-flow socket which received that SKB,
instead of the meta socket as it would have happened with
no modifications.  After  the  packets  are  enqueued  in  the
receive queue of the sub-flow, the sk_data_ready callback
is called. For TCP case this callback is used just for waking
up the application and signal it  that we have data in the
receive queue. MPTCP also has to pass the SKBs from the
sub-flow to meta receive queue. The application will wake
up and tcp_recvmsg() will  copy the data to the userspace
buffers.

MPTCP send path
The send path is split into two separate actions: scheduling
the data to be sent on one of the sub-flows and the actual
sending operation. The first part is mostly done in the path
manager  which  has  a  modular  architecture  that  allows
multiple implementations for MPTCP scheduling modules
(e.g. fullmesh, ndiffports, etc.).
The  second  part  deals  with  splitting  the  meta  socket
queued data into segments and adding the MPTCP specific
information – Data Sequence Signal (DSS) to them. It also
deals  with  retransmissions,  and  here  things  become

Figure 2: TCP queues [12]
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complex, as we might need to retransmit a segment on a
different sub-flow which might require changing the DSS
associated with the segment.
Since  the  DSS  information  must  be  stored  in  the  TCP
header as options and as the options are written off in the
header long after the segment is created, the DSS must be
stored somewhere in the SKB. One option would be to use
the TCP SKB control  block which is an opaque storage
area usable by protocols, and even some drivers, to store
private  per-packet  information [11].  The problem is  that
this space is limited, so the approach taken is to store it in
the data section of the SKB,  in the space reserved for the
TCP header. This also has drawbacks as each time a TCP
packet  is  copied  so  that  is  header  is  modified  (via
pskb_copy()) -  for example when a packet is prepared to
be sent on the wire and its the TCP header must be added,
the  DSS  options  must  also  be  copied  and  that  requires
changes in the TCP stack.
The MPTCP send path is fairly well isolated from the rest
of  the  TCP  stack  and  it  relies  on  hooks  in  the
tcp_write_xmit function. This function is called when there
is enough space in the send window and it sends the packet
to the IP layer. 

MPTCP implementation alternatives
As it  can be seen from the previous section the original
MPTCP  implementation  is  probably  the  most  flexible
approach and can arguably offer the best performance but
at the cost of increased complexity in the TCP stack.
An  alternative  would  be  to  implement  MPTCP  in
userspace. However, a complete userspace implementation
would require implementing a duplicate TCP stack since
MPTCP relies on a TCP stack being present. If an MPTCP
userspace implementation is to  be successful  we believe
that it needs to be able to use the existing kernel TCP stack.
This would require changes to the TCP stack so that we
can send and receive MPTCP options like MP_CAPABLE,
MP_JOIN,  DSS,  ADD_ADDRESS,  etc.  These  options
could  be  passed  as  control  messages  (also  known  as
ancilary data - data that is not part of the payload) to/from
userspace  using  sendmsg() or  recvmsg(). For  the  other
system calls  where  we  need  to  pass  or  receive  options,
such as  connect() and  accept(), we can probably rely on
setsockopt() and  getsockopt() to  schedule  options  to  be
sent or to receive options. However, we also need to pass
options  during  the  connection  handshake  on  the  server
side:  get  the  options  from  the  SYN  request  and  pass
options to the SYN,ACK response. With this, and probably
other  issues  to  be  found  in  the  details  of  the  current
MPTCP implementation, an equivalent of a FUSE [14] like
solution for networking is probably required if we are to be
successful  in  creating  a  userspace  implementation  for
MPTCP.
Another alternative is to try to manage the complexity of
an MPTCP implementation in  the  kernel  by moving the
MPTCP code in a separate layer that sits on top of the TCP
layer. Create a new socket family that will implement the

MPTCP logic  and  use plain  TCP sockets  for  sub-flows.
The  sub-flow sockets  can  be  manipulated  with  standard
kernel  level  API  such  as  tcp_read_sock(),
sock_create_kern(), kernel_sendpage() / kernel_sendmsg()
or  tcp_write_xmit().  The MPTCP options can  be  passed
through either the TCP SKB control block, through  control
messages  or  by  passing  another  parameter  to
kernel_sendpage(). In this approach one problem is how to
handle the fallback to TCP. The simple solution is to make
the MPTCP layer act as a middle man but more lightweight
solutions  that  switch  the  user  visible  socket  from  the
MPTCP socket to the sub-flow socket at the file level may
be possible.

MPTCP upstreaming process evolution
Our upstream work is split in two directions: a cleanup part
where we separate the MPTCP code from the TCP code
and  a  refactoring  part  where  we  build  a  new  layer  for
MPTCP operations and bring this layer a level up above
the TCP layer.

Isolate MPTCP code
With the purpose of separating the MPTCP and TCP layers
in mind, we noticed that a lot of the MPTCP code added
relied  on  a  few  conditions  that  differentiated  the  two
layers: if the current socket was a meta socket, if the other
end  was  MPTCP-capable  or  if  the  current  socket  is  a
master socket.
This  means  that,  inside the TCP code,  when one  of  the
conditions above was true, the flow would be passed to an
MPTCP function. We managed to remove these conditional
statements by doing the following: for each condition that
could  pass  the  control  from  TCP to  MPTCP functions,
create a suite of functions pointers in the  tcp_sock kernel
data structure, each pointer corresponding to a place where
that  condition  would  be  checked.  Afterwards,  whenever
that flag/condition changed its value (true → false or false
→ true), change the function pointer in tcp_sock to its TCP
or  MPTCP  function.  More  accurate,  the  tcp_sock_ops
structure  inside  the  tcp_sock structure  contains  a  list  of
function  pointers:  select_window,  init_buffer_space,
set_rto, write_xmit, write_wakeup and others. This object-
oriented design approach offers the possibility to initialize
the  function  pointers  once  and  remove  the  conditional
statements.  For  example  the  call
tp→ops→select_initial_window  may  call  either
mptcp_select_initial_window or tcp_select_initial_window
based  on  the  initial  assignment  to  select_initial_window
function pointer. This way, we removed all the conditional
statements  and  replace  them  with  calls  to  the  function
pointers placed in  tcp_sock. One concern that we initially
had  was  the  overhead  that  might  be  introduced  by  the
locking scheme: each time we called or changed one of the
function pointers, the socket containing it must have had its
lock held. This turned out to not be a problem due to the
fact that the socket was already locked by the upper levels.
This  locking  scheme is  the  reason  why  we added these
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function   pointers  to  tcp_sock and  not  in  a  separate
structure;  if  we would have grouped them in a  separate
structure,  then  the  upper  stack  levels  wouldn't  have  had
already taken care of the locking and we would have added
an overhead that could be avoided. As far as performance
goes,  we  noticed  a  slightly,  but  steadily  increased
throughput after applying the above mentioned changes.
The next step in separating the layers was to create a new
level  of  indirection  by  grouping  the  suite  of  functions
pointers based on the type of socket: functions for a default
TCP socket, functions for a sub-flow socket and, finally,
functions  for  the  meta  socket.  A normal  TCP socket  is
created using the default group of functions. If this socket
becomes MPTCP capable, the functions for sub-flow type
will be assigned to it and all future code will call specific
sub-flow functions. Also, a switch between these functions
is done in case of a fallback.
In order to isolate the MPTCP code even more, we created
MPTCP  specific  request  sockets  as  well  as  connection
request operations. This allowed us to reduce request_sock 
to  its  original  size.  It  also  allowed  us  to  remove  the
MPTCP code  from  the  TCP  stack  part  that  deals  with
accepting  new  connections  (tcp_v4_conn_request()  and
tcp_v6_conn_request())  since  we  can  now  parse  the
MPTCP options and do the MPTCP checks in the MPTCP
specific connection request operations after which we can
call the TCP specific connection request operations. As a
generalization  of  these  changes  we  also  removed  code
duplication  between  IPv4  and  IPv6  connection  request
functions.  This  independent  changes  were  positively

received by the Linux kernel networking community and
they were merged upstream.
Another  change  that  we  did  was  to  simplify  the  DSS
handling: save part of DSS options (and compute the rest
dynamically  when  writing  the  TCP header)  in  the  TCP
SKB control block when queuing a packet to a sub-flow.
This allowed us to remove the code that explicitly copies
the DSS block each time an SKB is copied. In order to fit
in the control block we had to use a double union: once
with  the  inet_skb_parm /  inet6_skb_parm union  –  these
two  are  only  used  on  the  receive  path,  and  once  with
MPTCP 's path_mask  - the mask is not used after queuing
the packet to the sub-flow.

Dedicated MPTCP layer
We  started  implementation  of  a  new  protocol,
IPPROTO_MPTCP  that  represent  the  MPTCP  protocol.
This way, we can implement MPTCP specific operations
cleanly and separately from the TCP layer. Following this
design,  meta  socket  is  created  as  soon  as  the  socket  is
created. This is a special IPPROTO_MPTCP socket. The
meta  socket  is  visible  to  the  application  level  and  the
MPTCP code will create sub-flows sockets that will simply
be  IPPROTO_TCP  sockets,  just  like  in  a  regular  TCP
connection as described in RFC 6824. However, these sub-
flows are different from a regular TCP sockets by the extra
MPTCP  options  that  it  encloses.  These  are  the  only
changes to the TCP sockets that we cannot separate from
the TCP layer. The rest of the MPTCP implementation is
moved an upper level that will communicate with the TCP
layer. In this way we have a clear separation between the
TCP operations represented by the functions from tcp_prot
structure  and  MPTCP  operations  from  mptcp_prot
structure.  We  have  total  freedom  to  write  our  own
operations for MPTCP without worrying of mixing code.
With this  approach,  the application needs to  specifically
open  an  MPTCP  connection.  However,  it  should  be
possible to redirect  TCP socket creation calls to MPTCP
socket  creation  calls  in  inet_create(), based  on,  for
example, sysfs settings. It also means that fallback to TCP
must  be  handled  inside  the  MPTCP  layer  itself  by
forwarding calls from the MPTCP layer to the TCP layer.
The IPPROTO_* constants generally match what is put on
the  wire  inside  the  IP  header.  In  the  first  phase
we chose number 7 for the new protocol and that it did not

Figure 4: Connect path. Before (left side) and after (right side)
code refactoring.

Figure 3: Path for the allocation of the meta and master socket.
Before (left side) and after (right side) code refactoring.
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match well  with this  convention,  since  this  number  was
already used by another IANA protocol, CBN. Based on
community feedback we later switched to define it using a
bit mask approach, IPPROTO_TCP | TCPEXT_MPTCP.
Regarding  the  kernel  data  structures,  the  new  layer
operations  are  implemented  in  the  mptcp_prot structure
and are specific to the meta socket. The sk_prot field from
the  sock structure of  the meta socket  points to this  data
structure.  Using  this  approach  we  preserve  the  object-
oriented design of the Linux kernel.

Early allocation of MPTCP resources
Starting  with  an  MPTCP  connection  by  default  and
allocating specific resources for it from the beginning gives
us the possibility to make a clear separation between the
master socket and the meta socket and remove the need for
cloning the meta socket.  Using the new approach we can
create the MPTCP data structures by the time the socket()
function is called in user space as it is illustrated in figure
3, right side. After the application calls socket(), requesting
for  IPRPROTO_MPTCP  the  control  is  passed  to
inet_create() in kernel space which calls sk → sk_prot →
init().  Depending on the protocol used,  the sk_prot  field
from  socket  points  to  a  specific  set  of  functions.
mptcp_v4_init_sock()  is  an  MPTCP  specific  function
where we allocate the master  socket,  an IPPROTO_TCP
socket, and the meta socket, an IPPROTO_MPTCP socket.
These  sockets  are  created  using  the  sock_create_kern()
function from kernel without the need to replicate an active
connection  because we don’t have one yet.

Simplified connect path
We also modified the connect path as can be seen in figure
4, right side. The application calls connect() in user­space
using   the   meta   socket.   The   difference   now   is   that   the
sk_prot field is initialized to the mptcp_prot structure and
instead   of   calling   tcp_v4_connect()   we   call
mptcp_v4_connect   which   is   MPTCP   specific.   We   can
access the master socket because the function receives the
meta socket as  a  parameter  and this management  socket
encapsulates all the sub­flows. After extracting the master
socket we can use it in order to establish a connection with
the server using a regular TCP function: tcp_v4_connect().

New receive path
When we started the work for the receive path we noticed
that there is some MPTCP code in the tcp_v4_rcv() related
to the handling of queues. Of course that we would like to
remove it, but that will cause MPTCP packets to go in the
prequeue and  backlog  of  the  sub-flows.  We would  then
need a way to move the data from the sub-flow sockets to
the meta socket. Our work for the receive path is still in
progress but the idea is illustrated in Listing 1. The pseudo
code has two main parts: mptcp_recvmsg() which is a pure
MPTCP  function  specific  to  the  meta  socket,  and  the
sk_data_ready callback, a modified version for waking up
the application. When the application tries to read data, a

call  to  mptcp_recvmsg()  will  be  triggered  and  the
application will wait for data using a wait-queue. It will be
woken up  by  sk_data_ready()  when there  is  data  in  the
receive queue of the sub-flow. We also use a 32 bit mask
for marking the sub-flow which has ready data. Every bit
from this mask identifies one of the 32 sub-flows (this is
the  maximum  number  of  sub-flows  in  the  current
implementation).
The processing of the backlog queue for the sub-flows will
be done in the release_sock() function as is done in normal
TCP.  Note that the prequeue is not going to be used for
MPTCP  as  sub-flows  are  not  being  directly  visible  to
userspace.
In order  to pass  the data from the sub-flow level  to  the
meta level we are using tcp_read_sock(), a standard kernel
API – or  at  least  used by other  important  users  such as
NFS, CIFS, etc.  tcp_read_sock() iterates through the sub-
flow  receive  queue,  extracts  an  SKB,  calls  a  helper
function (recv_actor) on that SKB then unlinks and frees
the SKB. The helper function is received as a parameter for
tcp_read_sock and this allowed us to fill it with code which
enqueues a clone of  the SKB from the sub-flow receive
queue to meta receive queue. Unlinking the packet is done
after  the  call  to  the  helper  function  so  our  code  is  not
allowed to remove it. That's the reason for using a clone in
the  helper  function:  an  SKB can't  be  in  more  than  one
queue at a time.
One issue that we had in integrating tcp_read_sock() was
that not all the SKBs from the receive queue had the DSS
mapping so we couldn't  enqueue the packet  in the meta
receive queue. A DSS option for a given packet may be
present  in  subsequent  packets  due  to  middle-boxes  that
coalesce  packets  and  drop  the  MPTCP  options  [13].
Because  of  that  we have  to  scan  the  receive  queue and
detect  the  DSS  mapping  before  unblocking  the  meta
socket's  mptcp_recvmsg().  We  can  do  that  in  the
mptcp_sk_data_ready callback function.
For  passing data to  user  space  we use  tcp_recvmsg() in
order to avoid duplicating the code for copying data to user
space. 

mptcp_recvmsg (on meta socket) 
    wait_event(wq, ready_sub-flows) 
    for all ready sub-flows 
        lock sock(sub-flow)
        tcp_read_sock(sub-flow) – recv actor
            clone SKB and add to meta socket 
        clear sub-flow ready bit
        release_sock(sub-flow) 

    tcp_recvmsg (meta socket, O_NONBLOCK) 

sk_data_ready (on sub-flow sockets)   
    scan the receive queue and update DSS mapping
    mark sub-flow ready and wake-up meta socket

Listing 1: Redesigned receive path
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Conclusions and future work
The work  that  we've  done until  know demonstrates  that
upstreaming a network protocol is  not an easy task. The
work that  prepares  MPTCP for  upstreaming started with
separating the TCP layer from the MPTCP layer, continued
with the creation of  a  new abstraction layer  above TCP
where we can define our own MPTCP specific operations
and reached a point where we redesign the receive path.
We  managed  to  make  the  code  clear  by  removing
conditional statements using function pointers, rework the
DSS handling to  remove extract  MPTCP code from the
TCP layer,  rework  the  connection  hand-shake  by  using
MPTCP  specific  request  and  connect  operations  that
allowed us to isolate MPTCP code and remove duplicated
TCP code  from MPTCP code,  and  exposed  an  MPTCP
specific  API to the application that  allows us to make a
clear  distinction  between  TCP  operations  and  MPTCP
operations.
As  future  work,  with  the  changes  that  expose  the  meta
sockets separatly from the TCP layer, we can rework the
send path and avoid the hook in the TCP layer. Instead of
doing the scheduling in tcp_write_xmit() at the TCP level
we can do it in sendmsg() at the meta socket level. 
We  are  also  looking  to  see  if  we  can  improve  the
performance  in  the  case  MPTCP  fallbacks  to  TCP  by
eliminating completely the MPTCP layer in this case. This
could be done by switching the user visible socket from the
MPTCP socket to the TCP socket at the struct socket level.
One side effect  of  the switch is that  we might  have the
switching done while a process is waiting for an event on
the old socket (e.g.  create the socket,  do a non-blocking
connect and then do a recvmsg). We can avoid this issue by
waking up the socket and restarting the system call. This
should be feasible to implement since all socket blocking
operations seems to use the sk_wq waiting queue which
makes it  fairly simple to wake-up the socket for a wide
range of blocking conditions.
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