

Linux Traffic Control
Classifier-Action Subsystem

Architecture

Jamal Hadi Salim
Netdev 0.1, Ottawa, On

Proceedings of netdev 0.1, Feb 14-17, 2015, Ottawa, On, Canada

Motivation

● Finally Document
● Hopefully have people use and build on top

(as opposed to re-invent)

Proceedings of netdev 0.1, Feb 14-17, 2015, Ottawa, On, Canada

Life Starts With A Port...

Network
Stack

● And Packets cometh...
● And Packets goeth...

Proceedings of netdev 0.1, Feb 14-17, 2015, Ottawa, On, Canada

Linux Datapath

● The main packet mangling hooks are traffic
control and netfilter

● We will focus on traffic control
Proceedings of netdev 0.1, Feb 14-17, 2015, Ottawa, On, Canada

Traffic Control Hierarchy

● Note: Ingress side does not have a class(queues)
● Our focus is on Classifiers and Actions

● We will refer to those two as CA
Proceedings of netdev 0.1, Feb 14-17, 2015, Ottawa, On, Canada

Early History

● Alexey Kuznetsov is the originator of TC and most of the
architecture as it stands right now
– Much of the flexibility and beauty

– Initial patches around kernel 2.1

● Werner Almesberger did a lot of formative work (many
things: classifiers, qdiscs, general education)

● Jamal created the “A” part of “CA” (and current maintainer)
● DaveM who was actively involved in those days

Proceedings of netdev 0.1, Feb 14-17, 2015, Ottawa, On, Canada

Classifiers

● Classifiers hold filters which segregate traffic
– Built-in default classifier based on protocol

● Many different types of classifiers
– No such thing as a universal classifier

– Each does something they are good at
● Unix philosophy

– Types can be mixed and matched when creating policies

● Example of classifiers
– U32, fw, route, rsvp, basic, bpf, flow, openflow, etc

● Example u32 could be used to build an efficient tree for packet lookup
based on chunks of 32-bit packet blocks

● Route is efficient with IP based route attributes
Proceedings of netdev 0.1, Feb 14-17, 2015, Ottawa, On, Canada

U32 Classifier

Proceedings of netdev 0.1, Feb 14-17, 2015, Ottawa, On, Canada

TC Classifier-Actions

● Packet + Metadata exchanged between the 2 blocks
● Can create a policy graph made of filters and actions

● Graph flow is programmable at both blocks
● Programming Constructs and flow control:

statement, if, else, while, goto, continue, end

Classifier
Block

Action Block

P+M

Proceedings of netdev 0.1, Feb 14-17, 2015, Ottawa, On, Canada

CA Programmatic Flow Control

● Priority arrangement of rule predicates is equivalent to if/else if/else
● Rules of the same protocol are grouped by priority
● Each rule maybe a totally different classifier algorithm

Proceedings of netdev 0.1, Feb 14-17, 2015, Ottawa, On, Canada

Classifier Flow Control

● Continue construct (contributes to if/else branching)
● Essentially continue onto next classifier rule

● Useful for having default policies and overriding rules
● reclassify construct (jump-back operation)

● Useful for adding or removing tunnel headers
● It means start the classification again

● All other constructs(Accept/Drop/Steal) terminate the pipeline
Proceedings of netdev 0.1, Feb 14-17, 2015, Ottawa, On, Canada

Anatomy of a Classifier Block
Branching

rule using
classifier

A
priority X

Rule using
classifier

B
Priority X

Rule using
classifier

B
Prio X+1

Rule using
classifier

C
Prio X+2

Reclassify: says to restart the classification

Continue: says to continue the classification

Ambiguity resolution upto to admin
- Rules are sorted by priorities
- When priority equal then

=> last entered rule more important

If ...
else if ..
else ...

Proceedings of netdev 0.1, Feb 14-17, 2015, Ottawa, On, Canada

Example classifier branching

classifier
Fw

proto IP
Match mark 3

priority 1

classifier
U32

Proto IP
Match icmp

Priority 2

Classifier
basic

Proto IP
Match text “foo”

Prio 3

classifier
Route

Match realm X
Priority 4

Reclassify: says to restart the classification

Continue: says to continue the classification

Proceedings of netdev 0.1, Feb 14-17, 2015, Ottawa, On, Canada

Actions

● Do one small thing they are good at
– Unix philosophy

● Typically the attributes of each instance of a
specific action sit in a table row
– Creation from the control plane is equivalent to

adding a table row

Proceedings of netdev 0.1, Feb 14-17, 2015, Ottawa, On, Canada

Actions

● Many actions exist
– nat, checksum, TBF policing, generic action (drop/accept),

arbitrary packet editor, mirroring, redirect, etc

● Each action instance maintains its own private state which
is typically updated by arriving packets

● Each action instance carries attributes and statistics
● An action instance can be shared across more than one

service graph

Proceedings of netdev 0.1, Feb 14-17, 2015, Ottawa, On, Canada

TC Actions: Simple chain

● Actions policy chain using using pipe construct
(emulating the unix | operator)
● i.e pipe a packet across actions

● As in Unix pipe chain can conditionally be
terminated earlier by any action

● Action state, packet Drop, Packet Acceptance, Packet stealing

P+M P+M P+M P+M P+M

Proceedings of netdev 0.1, Feb 14-17, 2015, Ottawa, On, Canada

Actions: Branching Control

● if and else conditions programmed in action instance
● Any action could conditionally repeat (REPEAT)

● Loop construct
Proceedings of netdev 0.1, Feb 14-17, 2015, Ottawa, On, Canada

A Simple Program

Proceedings of netdev 0.1, Feb 14-17, 2015, Ottawa, On, Canada

A Simple Program: Functional View

Proceedings of netdev 0.1, Feb 14-17, 2015, Ottawa, On, Canada

Summary: Classifier-Action
Pipeline

Action Programmatic Control
● Stolen/Queued (end CA pipeline)
● DROP (end CA pipeline)
● ACCEPT (end CA pipeline)
● PIPE (iterate next action)
● CONTINUE (end Action pipeline)
● RECLASSIFY (end Action pipeline)
● REPEAT (restart action processing)
● JUMPx (jump X actions in pipeline)

Classifier Programmatic control
● CONTINUE (iterate next rule)
● RECLASSIFY (restart pipeline)
● All others (end CA pipeline)

Proceedings of netdev 0.1, Feb 14-17, 2015, Ottawa, On, Canada

Sharing Actions: IMQ

Proceedings of netdev 0.1, Feb 14-17, 2015, Ottawa, On, Canada

Aging of Policies

● All Actions keep track of when they were
installed and last used

● Control side can use this info to implement
aging algorithms

Proceedings of netdev 0.1, Feb 14-17, 2015, Ottawa, On, Canada

Late Binding

● Action instances can be created
● Later bound to policies

Proceedings of netdev 0.1, Feb 14-17, 2015, Ottawa, On, Canada

Distributing CA

Proceedings of netdev 0.1, Feb 14-17, 2015, Ottawa, On, Canada

Future Work

● More Classifiers and Actions of course
● Functional discovery
● Usability

– tcng effort by Werner

– Programmability extension into higher level
language (python, lua etc)

Proceedings of netdev 0.1, Feb 14-17, 2015, Ottawa, On, Canada

Future Work: Hardware Offload

Realtek RTL8366xx

Proceedings of netdev 0.1, Feb 14-17, 2015, Ottawa, On, Canada

Lets Write Some Programs

Proceedings of netdev 0.1, Feb 14-17, 2015, Ottawa, On, Canada

Counting Packets To A Host

● Goal: get acquinted with the control setup via CLI
● Ping google.com
● Show statistics

Network
Stack

Egress
Port

(eth1)

U32 rule prio 10
match dest = google.com

Action BlockClassifier Block

Accept

Proceedings of netdev 0.1, Feb 14-17, 2015, Ottawa, On, Canada

Counting Packets To/From A Host

● Goal: get acquinted with the control setup via CLI
● Ping google.com
● Show statistics

Network
Stack

Egress
Port

(eth1)

U32 rule prio 10
match dest = google.com

Accept
Index 12

Ingress
Port

(eth1)
U32 rule prio 10

match src = google.com
Accept
Index 2

Proceedings of netdev 0.1, Feb 14-17, 2015, Ottawa, On, Canada

Counting Packets To/From A Host
Shared Action Instance

● Goal: A little more complex setup (sharing action instance)
● Ping google.com and show statistics
● Broken for ubuntu shipped kernels and iproute2

Network
Stack

Egress
Port

(eth1)

U32 rule prio 10
match dest = google.com

Accept
Index 12

Ingress
Port

(eth1)
U32 rule prio 10

match src = google.com
Accept
Index 12

Proceedings of netdev 0.1, Feb 14-17, 2015, Ottawa, On, Canada

More Complex Service

● Goal: Illustrate a more complex service
– More complex action graph

● Broken for ubuntu shipped kernels and
iproute2

Ingress
Port

(eth1)

U32 rule prio 10
If match packet == icmp skbedit

Mark 11

Network
Stack

police
10kbps

skbedit
Mark 12

police
20kbps

If exceeded

else !exceeded else !exceeded

copy to
dummy0

1

If exceeded

2

egress
Port

(dummy0)

Proceedings of netdev 0.1, Feb 14-17, 2015, Ottawa, On, Canada

More Complex Service
Shared Rate control

Ingress
Port

(eth1)

U32 rule prio 10
If match packet == icmp skbedit

Mark 11

Network
Stack

police
10kbps
Index 1

skbedit
Mark 12

police
20kbps
Index 2

If exceeded

else !exceeded else !exceeded

copy to
dummy0

1

If exceeded

2

egress
Port

(dummy0)

Ingress
Port
(lo)

U32 rule prio 10
If match packet == icmp skbedit

Mark 21

police
10kbps
Index 1

skbedit
Mark 22

police
20kbps
Index 2

copy to
dummy1

egress
Port

(dummy1)

2

1

else !exceeded

If exceeded

If exceeded

else !exceeded

Proceedings of netdev 0.1, Feb 14-17, 2015, Ottawa, On, Canada

