
Shaping the Linux kernel
MPTCP implementation

towards upstream acceptance

Doru-Cristian Gucea

Octavian Purdila

Proceedings of netdev 0.1, Feb 14-17, 2015, Ottawa, On, Canada

Agenda

MPTCP in a nutshell

Use-cases

Basics

Initial Linux kernel implementation

Implementation alternatives

Towards upstream submission

Questions
Proceedings of netdev 0.1, Feb 14-17, 2015, Ottawa, On, Canada

MPTCP in nutshell

● Transport level multi-path solution

● Unmodified applications and network

● Works at least as well as regular TCP

● Works when a regular TCP would work

● Falls back to regular TCP if needed

● Fair with TCP, moves traffic away from
congestion

Proceedings of netdev 0.1, Feb 14-17, 2015, Ottawa, On, Canada

Improved mobility with MPTCP

Proceedings of netdev 0.1, Feb 14-17, 2015, Ottawa, On, Canada

Throughput during a subway trip

Proceedings of netdev 0.1, Feb 14-17, 2015, Ottawa, On, Canada

Other MPTCP use-cases

● Power improvements via race to idle

● VM migration across different network domains

● Multi-WiFi: take advantage of multiple APs

● Improved throughput and reliability in the data-center

Proceedings of netdev 0.1, Feb 14-17, 2015, Ottawa, On, Canada

MPTCP basics

3G celltower

Proceedings of netdev 0.1, Feb 14-17, 2015, Ottawa, On, Canada

MPTCP basics

3G celltower
SYN

MP_CAPABLE X
SYN

MP_CAPABLE X

Proceedings of netdev 0.1, Feb 14-17, 2015, Ottawa, On, Canada

MPTCP basics

3G celltower

SYN/ACK

M
P_CAPABLE Y

SYN/ACK

M
P_CAPABLE Y

Proceedings of netdev 0.1, Feb 14-17, 2015, Ottawa, On, Canada

MPTCP basics

3G celltower

ACK

M
P_CAPABLE
ACK

M
P_CAPABLE

Proceedings of netdev 0.1, Feb 14-17, 2015, Ottawa, On, Canada

MPTCP basics

3G celltower
STATE
CWND
Snd.SEQNO
Rcv.SEQNO
…

Proceedings of netdev 0.1, Feb 14-17, 2015, Ottawa, On, Canada

MPTCP basics

3G celltower
STATE
CWND
Snd.SEQNO
Rcv.SEQNO
…

Proceedings of netdev 0.1, Feb 14-17, 2015, Ottawa, On, Canada

MPTCP basics

3G celltower
STATE
CWND
Snd.SEQNO
Rcv.SEQNO
…

Proceedings of netdev 0.1, Feb 14-17, 2015, Ottawa, On, Canada

MPTCP basics

3G celltower
STATE
CWND
Snd.SEQNO
Rcv.SEQNO
…

SYN/ACK

JOIN X
SYN/ACK

JOIN XProceedings of netdev 0.1, Feb 14-17, 2015, Ottawa, On, Canada

MPTCP basics

3G celltower
STATE
CWND
Snd.SEQNO
Rcv.SEQNO
…

STATE B
CWND
Snd.SEQNO
Rcv.SEQNO
…

Proceedings of netdev 0.1, Feb 14-17, 2015, Ottawa, On, Canada

MPTCP basics

3G celltower
STATE
CWND
Snd.SEQNO
Rcv.SEQNO
…

STATE B
CWND
Snd.SEQNO
Rcv.SEQNO
…

DATA

SEQ A

DSEQ
: 1

DATA

SEQ A

DSEQ
: 1

Proceedings of netdev 0.1, Feb 14-17, 2015, Ottawa, On, Canada

MPTCP basics

3G celltower
STATE
CWND
Snd.SEQNO
Rcv.SEQNO
…

STATE B
CWND
Snd.SEQNO
Rcv.SEQNO
…

DATA

SEQ A

DSEQ
: 1

DATA

SEQ A

DSEQ
: 1

DATA
SEQ B

DSEQ: 2

DATA
SEQ B

DSEQ: 2Proceedings of netdev 0.1, Feb 14-17, 2015, Ottawa, On, Canada

Initial Linux kernel implementation

● Implementation done directly at the TCP level

● Good performance

● Low overhead when falling back to TCP

● Intrusive changes that increases the complexity of the TCP stack

Proceedings of netdev 0.1, Feb 14-17, 2015, Ottawa, On, Canada

Key MPTCP structures

Meta socket

Sub-flow socketMaster socket Sub-flow socket

TCP socket, visible to userspace

TCP sockets, not visible to userspace
Proceedings of netdev 0.1, Feb 14-17, 2015, Ottawa, On, Canada

Pros/cons of using TCP sockets

● Re-use TCP code that transfers data to/from userspace
(tcp_sendmsg, tcp_recvmsg)

● Makes MPTCP transparent to the application (including fallback)

● Some TCP functions now must deal with 3 cases

– TCP socket

– MPTCP sub-flow socket

– MPTCP meta socket

Proceedings of netdev 0.1, Feb 14-17, 2015, Ottawa, On, Canada

Creating the master socket

Meta socket

SYN,MP

SYN,ACK,MP

ACK,MP

Master socket

m
ptcp_sk_clone

Meta socket

Proceedings of netdev 0.1, Feb 14-17, 2015, Ottawa, On, Canada

Fallback to TCP

SYN,MP

SYN,ACK

ACK

Meta socket

Plain TCP socket

m
pc =

false

Proceedings of netdev 0.1, Feb 14-17, 2015, Ottawa, On, Canada

TCP queues (simplification)

Backlog q

Receive q

out of order q

tcp_v4_rcv

tcp_recvmsg
tcp_sendmsg

Write q

tcp_write_xmittcp_retransmit_skb

tcp_transmit_skb

Proceedings of netdev 0.1, Feb 14-17, 2015, Ottawa, On, Canada

MPTCP receive path

Meta backlog q

 Sub-flow receive q

Sub-flow out of order q

tcp_v4_rcv

m
p

tc
p

_
b

a
ck

lo
g

_
rc

v

mptcp_sk_ready

mptcp_sk_ready

 Meta receive q

 Meta out of order q

tcp_recvmsg

Proceedings of netdev 0.1, Feb 14-17, 2015, Ottawa, On, Canada

MPTCP send path

tcp_sendmsg

Meta write q

mptcp_write_xmitmptcp_retransmit_skb

Sub-flow write q

Mptcp scheduler

Proceedings of netdev 0.1, Feb 14-17, 2015, Ottawa, On, Canada

MPTCP DSS options

● Maps meta seq to sub-flow seq

● 20 bytes

● Does not fit into skb->cb

● Save them in the skb data in
the space reserved for the TCP
header

● Everytime pskb_copy() is called
from the TCP stack we need to
copy DSS manually

Head

Data

Tail

End

R
eservered for

M
A

C
/IP

/T
C

P
 heade

r

Save
DSS
here

Proceedings of netdev 0.1, Feb 14-17, 2015, Ottawa, On, Canada

Alternative approaches

● Userspace implementation

– Requires infrastructure to pass / receive MPTCP options from userspace

● Use control messages for sendmsg/recvmsg

● Needs new userspace ABIs to handle the connection handshake

– Complete rewrite

● Create a separate layer on top of TCP (similar with how NFS, CIFS
uses TCP)

Proceedings of netdev 0.1, Feb 14-17, 2015, Ottawa, On, Canada

Towards a separate MPTCP layer

● Eliminate the branches in the TCP code that deals with MPTCP sub-
flow and meta sockets

– Isolate the MPTCP sub-flow functionality

– MPTCP meta sockets are not TCP sockets – create a new protocol to deal
with them

● Eliminate code duplication between TCP and MPTCP

Proceedings of netdev 0.1, Feb 14-17, 2015, Ottawa, On, Canada

MPTCP sub-flow specific code in TCP

● MPTCP connection hand-shake

– Client side

– Server side

● MPTCP receive window

● MPTCP send and receive path hooks

● MPTCP coupled congestion code

Proceedings of netdev 0.1, Feb 14-17, 2015, Ottawa, On, Canada

Isolate MPTCP connection handshake – TX

● Connection socket operations are
used to abstract and isolate IPv4
and IPv6

● By defining MPTCP specific
connection socket operation we
isolated the TX part of MPTCP sub-
flow handshake

queue_xmit

send_check

con_request

syn_recv_sock

...

Connect socket operations

Proceedings of netdev 0.1, Feb 14-17, 2015, Ottawa, On, Canada

Isolate MPTCP connection handshake – RX

● On the receive side request
socket operations are used to
abstract MD5 code

● Unfortunately these operations
are not enough to isolate MPTCP
code but...

● We noticed significant code
duplication between the IPv4
and IPv6 paths

md5_lookup

calc_md5_hash

Request socket operations

Proceedings of netdev 0.1, Feb 14-17, 2015, Ottawa, On, Canada

Isolate MPTCP connection handshake – RX

● Added new operations to
abstract and isolate the IPv4 and
IPv6 paths

● With that we also isolated the
RX part of MPTCP sub-flow
handshake

Request socket operations

init_req

cookie_init_seq

cookie_init_seq

route_req

send_synack

queue_hash_add

init_seq
Proceedings of netdev 0.1, Feb 14-17, 2015, Ottawa, On, Canada

Isolate MPTCP receive window and send path

● Introduce a new structure to
abstract some TCP socket operations

● Specific operations for the meta
socket, sub-flow socket and regular
TCP

write_xmit

write_wakeup

select_initial_window

init_buffer_space

set_rto

TCP socket operations

...

Proceedings of netdev 0.1, Feb 14-17, 2015, Ottawa, On, Canada

git diff v3.18..mptcp_trunk --stat (>10)

 include/linux/tcp.h | 85 +

 include/net/sock.h | 11 +

 include/net/tcp.h | 194 ++

 net/core/sock.c | 35 +

 net/ipv4/af_inet.c | 27 +

 net/ipv4/inet_connection_sock.c | 21 +

 net/ipv4/tcp.c | 182 ++

 net/ipv4/tcp_fastopen.c | 28 +

 net/ipv4/tcp_input.c | 320 +++

 net/ipv4/tcp_ipv4.c | 202 ++

 net/ipv4/tcp_minisocks.c | 95 +

 net/ipv4/tcp_output.c | 254 ++

 net/ipv4/tcp_timer.c | 81 +

 net/ipv6/tcp_ipv6.c | 274 +++

Proceedings of netdev 0.1, Feb 14-17, 2015, Ottawa, On, Canada

Separate MPTCP meta layer

● Rationale: the meta socket is not a TCP socket

● Create a new IP protocol level socket for MPTCP

socket(AF_INET, SOCK_STREAM, IPROTO_TCP|TCPEXT_MPTCP)

Proceedings of netdev 0.1, Feb 14-17, 2015, Ottawa, On, Canada

WIP: early allocation of the master socket

● Allocate the master socket as soon as the meta socket is created

● Falling back to TCP adds overhead as we now go through the meta
socket

● MPTCP is not transparent at the application level*

● Simplifies the connect path:

– Connect of meta socket translates to connect on master socket

– Avoids cloning the meta socket and changes in the inet connection layer

Proceedings of netdev 0.1, Feb 14-17, 2015, Ottawa, On, Canada

WIP: receive path

 Sub-flow receive q

mptcp_recvmsg

 Meta receive q

 Meta out of order q

tcp_recvmsg mptcp_recvmsg (on meta socket)

 wait_event(wq, ready_sub-flows)

 for all ready sub-flows

 lock sock(sub-flow)

 tcp_read_sock(sub-flow) – recv actor

 clone SKB and add to meta socket

 clear sub-flow ready bit

 release_sock(sub-flow)

 tcp_recvmsg (meta socket, O_NONBLOCK)

sk_data_ready (on sub-flow sockets)

 scan the rx queue update DSS mapping

 mark sub-flow and wake-up meta socket

Proceedings of netdev 0.1, Feb 14-17, 2015, Ottawa, On, Canada

WIP: send path

mptcp_sendmsg Meta write q

Sub-flow write q

tcp_send_skb?

tcp_push

MPTCP Reinjection
work queue

Proceedings of netdev 0.1, Feb 14-17, 2015, Ottawa, On, Canada

Conclusions

● MPTCP has interesting use-cases and it is used commercially

● The initial Linux kernel implementation had large TCP stack changes

● We have been steadily reducing changes to the TCP stack

● We believe a separate MPTCP layer should help us reduce TCP
changes even more and help us manage the complexity

Proceedings of netdev 0.1, Feb 14-17, 2015, Ottawa, On, Canada

Thank you!

Proceedings of netdev 0.1, Feb 14-17, 2015, Ottawa, On, Canada

