

netfilter hw offloads: flow offload API
Pablo Neira Ayuso <pablo@netfilter.org

ethtool_rx and tc offloads

● Duplicated code for each subsystem:
– ethtool_rx: layer 2, 3, 4 tuple matching (basic) +

accept/drop + WoL + queue to cpu (rss ctx, vf).
Binary blob between kernel and userspace.

– Tc: layer 2,3,4 tuple matching + accept/drop/goto +
redirect + packet edition + tunnel + checksum +
mark + ratelimit (police) + sampling
Netlink message between kernel + userspace.

Flow Rule API

● tc supports for hardware offloads:
– Rule match: flow dissector (net/core/flow_dissector.c)

● net/sched/cls_flower.c uses native representation

– Rule action: tc action API
● net/sched/act_api.c

● Add flow rule API (include/net/flow_offload.h>

flow_rule {
 flow_match (flow dissector)
 flow_action (based on tc action API)
}

● Adapt drivers to use it.

Flow block API

● Drivers set up a “flow block” via ndo_setup_tc
– FLOW_BLOCK_SETUP type

● FLOW_BLOCK_BIND → attach to tc block / nft basechain
● FLOW_BLOCK_UNBIND → detach to tc block / nft

basechain

– FLOW_CLS_{REPLACE,DESTROY} type to
add/delete rules

● Move tcf_block_cb to flow_block_cb in
net/core/flow_offload.c

Drivers using flow offload API

● bnxt, bcm_sf2 switch
● mlx5, spectrum switch
● Nfp
● Qede
● Ocelot
● cxgb4

nf_tables_offload

● Offload flag for base chain:
– Step 1, preparation phase → build flow rule object

from nft_rule

– Step 2, commit phase → iterate over transaction
objects and call ndo_setup_offload with
FLOW_CLS_SETUP (pass flow rule object)

– Step 3, driver fills up hardware intermediate
representation and configures offload.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6

