Analysis of the simple token bucket filter algorithm
implementation inside the netfilter's limit module.

Nicolas Bouliane
nicboul at gmail.com

August 04, 2007

Abstract

The netfilter's limit module provides a way to match
at a limited rate wusing a token bucket filter
algorithm. In this paper we analyse the design and
implementation of the simple token Dbucket filter
algorithm inside the 1limit match. We show that the
accuracy is deficient, and that the overflow handling
is broken. We then provide a more secure, flexible and
clean STBF implementation.

Introduction

The limit module provides 2 options: --limit and --limit-burst.
These options allow us to specify the average precision of the limit
rate we want to match. The 1limit rate boundaries specified by the
module are 10 000/sec and 1l/day. The fastest is 10 000 packets per
second and the slowlest is 1 packet per day.

The algorithm inconsistency

The 1limit module specifies that the maximum limit is 10 000
packets per second which is a period of 1/10 000 sec or 0.lms. We have
found that the maximum limit rate is rather, on an i386 architecture,
of 250 packets per second which is a period of 1/250 sec or 4.0ms. The
algorithm is based on a counter called jiffy. The frequency of the
jiffy counter stand in the HZ macro which is arch dependant. This
value is 250 by default on the 1i386. Jiffy counter is incremented
every 4.0ms. You can see a strong relationship between the practical
limit rate of 250 packets per second and the frequency of the jiffy
which is 250 incrementations per second.

How the algorithm works

The algorithm is based on a concept of credit. We begin with an
amount of credits calculated from the values specified with the --
limit and --limit-burst. This amount of credits we start with is also
the maximum credit we can have. We also calculate a cost that every
packet that pass needs to pay. The only way to get new credit is to
wait, that means that only time can give us new credit. It use the
jiffies counter because it's more efficient than using a real clock on
every packet. It's thus impossible to give new credits every time, we
must have a checkpoint. This checkpoint is the jiffy counter which is
incremented HZ times per second. As stated above, HZ is 250 on the
1386 architecture.

Where stand the algorithm inconsistency

We will use a real example, let's say:
--limit 5000/sec --limit-burst 1

If we printk() the values from the xt_limit module we see that the
maximum credit is 6 and that the cost is 6. A rate of 5000 packets per
second is a packet every 0.2ms or 20 packets every 4ms. The checkpoint
frequency is 250 times per second (i386), it means that every 4ms we
get new credits. Every time we reach the checkpoint we can get a
maximum of 6 credits, even if we try to get more credits, our maximum
credits capacity is fixed to 6. The problem is that we get enough
credit for only 1 packet every 4ms and that we must wait to the next
checkpoint to accept new packet. So, every 4ms we get 6 credits which
is the cost for only 1 packet. This is equal to 250 packets per
second.

maimum credit 5 000 pktz § =ec

o I I T I —
M incoming
[f { { f pracket

A N .
,I l|I l|| .'I l|I | credit = cost

L A A !

tirme
4ms 4ms 4ms 4ms 4ms

This graphic shows that every 4ms we get 6 credits and we then allow 1
packet to pass which cost 6 credits. We then must wait 4ms before
allowing a packet to pass through.

Practical test with ping:
-A OUTPUT -p icmp -m limit --limit 5000/sec --limit-burst 1 -j ACCEPT
-A OUTPUT -p icmp -j DROP

ping -c 500 -s 1 -i 0 192.168.0.101
PING 192.168.0.101 (192.168.0.101) 1(29) bytes of data.
--- 192.168.0.101 ping statistics ---
500 packets transmitted, 250 received, 50% packet loss, time 2998ms

We have sent 500 packets in around 3 secs. Even if we allowed 5000
packets per second, only 250 packets have been received.

The quiet overflow

The algorithm calculate the maximum credit and the cost. Because
the algorithm plays with big numbers we must handle integer overflow
gracefully.

/* Check for overflow. */
if (r->burst ==
|| user2credits(r->avg * r->burst) < user2credits(r->avg)) {
printk("Overflow in xt_limit, try lower: %u/%u\n",
r->avg, r->burst);
return 0;

Hopefully we have a mechanism that is supposed to protect us against
overflow. Unfortunately we have found that sometimes overflows are not
caught.

We will use a real example, let's say --limit 3/day --limit-burst 5. We then
can see in syslog: overflow in xt_limit, try lower: 288000000/5. The overflow
has been caught. But surprisingly with --limit 3/day --limit-burst 6, we get
absolutely nothing and the rule get inserted.

It's time to get our hands in the code, and to do some mathematics.

Userspace:
*val = XT LIMIT SCALE * mult / r;

Kernelspace:
static u_int32 t user2credits(u_int32_t user)

{
/* If multiplying would overflow... */
if (user > OXFFFFFFFF / (HZ*CREDITS_PER _JIFFY))
/* Divide first. */
return (user / XT LIMIT SCALE) * HZ * CREDITS_ PER JIFFY;

return (user * HZ * CREDITS_PER JIFFY) / XT LIMIT SCALE;

r->credit_cap = user2credits(r->avg * r->burst); /* Credits full. */
r->cost = user2credits(r->avg);

The calculation of --limit 3/day --limit-burst 5:

*val = XT LIMIT SCALE * mult / r;
10 000 * 24*60*60 / 3 = 288 000 000

r->credit_cap = user2credits(r->avg * r->burst);
288 000 000 * 5 = 1 440 000 000

if (user > OxFFFFFFFF / (HZ*CREDITS PER_JIFFY))
1 440 000 000 > 134 218

return (user / XT_LIMIT_SCALE) * HZ * CREDITS_PER JIFFY;
1 440 000 000 / 10 000 * 250 * 128
= 4 608 000 000 (CNISEENSE) [return 313 032 705]

So, user2credits(r->avg * r->burst) returns 313 032 705. The overflow
handling mechanism state that if wuser2credits(r->avg * r->burst) is lower
than user2credits(r->avg), we have caught an overflow. We need to calculate
user2credits(r->avg) NOwW.

r->credit_cap = user2credits(r->avg);
288 000 000

if (user > OxFFFFFFFF / (HZ*CREDITS PER_JIFFY))
288 000 000 > 134 218

return (user / XT_LIMIT_SCALE) * HZ * CREDITS_PER JIFFY;
288 000 000 / 10 000 * 250 * 128
= 921 600 000 [return 921 600 000]

Now we know that user2credits(r->avg * r->burst) returns 313 032 705 and that
user2credits(r->avg) return 921 600 000.

Because the statement 313 032 705 < 921 600 000 is true, the overflow
is caught.

We will show you where stands the hidden overflow through the
calculation of --limit 3/day --limit-burst 6.

*val = XT LIMIT_SCALE * mult / r;
10 000 * 24*60*60 / 3 = 288 000 000

r->credit_cap = user2credits(r->avg * r->burst);
288 000 000 * 6 = 1 728 000 000

if (user > OxFFFFFFFF / (HZ*CREDITS_ PER_JIFFY))
728 000 000 > 134 218

return (user / XT LIMIT SCALE) * HZ * CREDITS PER _JIFFY;
1 728 000 000 / 10 000 * 250 * 128
=5 529 600 000 (CHSEENSN) [return 1 234 632 705]

r->credit_cap = user2credits(r->avg);
288 000 000

if (user > OxFFFFFFFF / (HZ*CREDITS PER_JIFFY))
288 000 000 > 134 218

return (user / XT_LIMIT SCALE) * HZ * CREDITS_PER JIFFY;
288 000 000 / 10 000 * 250 * 128
= 921 600 000 [return 921 600 000]

Now we know that user2credits(r->avg * r->burst) returns 1 234 632 705 and
that user2credits(r->avg) returns 921 600 000.

Because the statement 1 234 632 705 < 921 600 000 is false, the
overflow has not been caught. You can extrapolate and see all the
pairs of --limit and --limit-burst that would overflow without being
caught.

Analysis conclusion

The 1limit module is fragile from an implementation perspective
and flawed from a mathematical perspective. The limit rate scalability
cannot achieve the expectation due to a misunderstanding of the
implication of the Jjiffy counter frequency. The overflow handling
mechanism fails to catch all possible overflows, possibly because of
its subpar design and testing. Furthermore, the implementation use a
rather obscure way to calculate the maximum credit and cost which is
prone to bugs.

What we propose

Our goal was to propose an implementation aware of the jiffy
frequency, mathematically easy to understand and with clear
boundaries.

The mathematics

credit The number of credit we have
credit max The maximum credit we can have
cost The passing cost for one packet
cpj The number of credits per jiffy
L The number of packet per period
t The period (sec, min, hour, day)
HZ The jiffy counter frequency
B The limit burst

L/ t > HZ
credit = (L / (t * HZ)) * B
credit max = (L / (t * HZ)) * B
cost =1

cpj = L / HZ

L/ t < HZ
credit = ((t * HZ) / L) * B
credit max = ((t * HZ) / L) * B
cost = (t * HZ) / L

cpj =1

Real Life examples

We want match 1000 packets per second, without limit burst.

1000 / 1 > 250

credit = (1000 / (1 * 250)) * 1
credit max = (1000 / (1 * 250)) * 1
cost =1

cpj = 1000 / 250

We start with 4 credits and it's the maximum credit we can ever have.
The cost per packet is 1 and the number of credits we receive per
jiffy is 4. Every time we hit the checkpoint, every 4ms with HZ set to
250, we get 4 new credits. A rate of 1000 packets per second means
that between each checkpoint we can let 4 packets pass.

We want match 600 packets per minute, without limit burst.

600 / 60 < 250

credit = ((60 * 250) / 600) * 1
credit max = ((60 * 250) / 600) * 1
cost = ((60 * 250) / 600)

cpj =1

We start with 25 credits and it's the maximum credit we can ever have.
The cost per packet is 25 and the number of credit we receive per
jiffy is 1. Every time we hit the checkpoint, every 4ms with HZ set to
250, we get 1 new credit. A rate of 600 packets per minute means that
we let pass 1 packet every 25th checkpoints.

The boundaries

Defining the boundaries is not trival to do. In our formula we
have four variables we must take in consideration: L, t, B and HZ.

/ (t* Hz) * B < MAX INT

t *HZ) /L * B < MAX INT

We want also be able to inform the user what the boundaries are, which
is tricky because the HZ is only visible from the kernelspace. We know
that for almost every architecture HZ is set to 250. The only
exception is maybe the Alpha with an HZ set to 1000. The period can be
l(sec), 60(min), 60*60(hour) or 24*60*60(day). We could try to do some
mathematical calculation to find the exact boundaries for every values
of L. and B with the different possible values of HZ and t, is it worth
it? We have decided to set the boundaries so it can reflect
realistically useful values. This way, it's easier to test overflows,
to inform the user what the boundaries are and to keep the code clean.

The upper bound is set to :
L * B <= 100 000

The product of L and B must be lower or equal to 100 000. The
throughput of a gbit ethernet is roughly 100 000 packets per second.
Here are some valid limit/limit-burst pair :

--limit 100000/sec --limit-burst 1
--limit 1/sec --limit-burst 100000
--limit 316/sec --limit-burst 316

Conclusion

If you found something weird, obscure, wrong, stupid, etc.
Please contact me.

Discussion

The implementation we proprose could be improved from a
granularity perspective with scaled math.

