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Overview: What will you learn?
Audience at Kernel Recipes: Other kernel developers

But for different kernel sub-systems
Learn about: kernel network data structures

Hopefully you already heard about XDP (eXpress Data Path) ? ? ?
I’ll explain why network sub-system created this…

Future crazy ideas to extend XDP
(hopefully) in a way that cooperate more with kernel netstack

Give you an easy way to try out XDP and BPF on your laptop
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Why was XDP needed?
This was about the kernel networking stack staying relevant

For emerging use-cases and areas
Linux networking stack assumes layer L4-L7 delivery

Obviously slow when compared to L2-L3 kernel-bypass solutions
XDP operate at layers L2-L3

Shows same performance as these L2-L3 kernel-bypass solutions

The networking OSI layer model:

L2=Ethernet
L3=IPv4/IPv6
L4=TCP/UDP
L7=Applications
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What is XDP?
What kind of monster did we create with XDP?!?

XDP (eXpress Data Path) is a Linux in-kernel fast-path
New programmable layer in-front of traditional network stack

Read, modify, drop, redirect or pass
For L2-L3 use-cases: seeing x10 performance improvements!
Can accelerate in-kernel L2-L3 use-cases (e.g. forwarding)

What is AF_XDP? (the Address Family XDP socket)
Hybrid kernel-bypass facility
Delivers raw L2 frames into userspace (in SPSC queue)
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AF_XDP: Used for kernel-bypass?!?
Did you really say, this can be used for bypassing the Linux kernel netstack ?

Sure, build in freedom for kernel-bypass via AF_XDP
DPDK already have a Poll-Mode driver for AF_XDP

Why is this better, than other (bypass) solutions?
Flexible sharing of NIC resources, NIC still avail to netstack
XDP/eBPF prog filters packets using XDP_REDIRECT into AF_XDP socket

Move selective frames out of kernel, no need to reinject
Leverages existing kernel infrastructure, eco-system and market position
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How can XDP be (ab)used?
Used or abused?

Freedom re-implement everything (when bypassing the kernel)
Or freedom to shoot yourself in the foot?
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Simple view on how XDP gains speed
XDP speed gains comes from

Avoiding memory allocations
no SKB allocations and no-init (memset zero 4 cache-lines)

Bulk processing of frames
Very early access to frame (in driver code after DMA sync)
Ability to skip (large parts) of kernel code
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Skipping code: Efficient optimization
Skipping code: Imply skipping features provided by network stack

Gave users freedom to e.g. skip netfilter or route-lookup
But users have to re-implement features they actually needed

Sometimes cumbersome via BPF-maps
Avoid re-implement features:

Evolve XDP via BPF-helpers
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Evolving XDP via BPF-helpers
We should encourage adding helpers instead of duplicating data in BPF maps

Think of XDP as a software offload layer for the kernel netstack
Simply setup and use the Linux netstack, but accelerate parts of it with XDP

IP routing good example: Access routing table from XDP via BPF helpers (v4.18)
Let Linux handle routing (daemons) and neighbour/ARP lookups
Talk at LPC-2018 (David Ahern): 

Obvious next target: Bridge lookup helper
Like IP routing: transparent XDP acceleration of bridge forwarding

Fallback for ARP lookups, flooding etc.
Huge potential performance boost for Linux bridge use cases!

Leveraging Kernel Tables with XDP
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Understand networking packet data
structures
To understand next slides and (XDP) kernel networking

Need to know difference between some struct’s
Used for describing and pointing to actual packet data
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Fundamental struct’s
The struct’s describing data-frame at different levels
sk_buff : Good old SKB, allocated from SLAB/kmem_cache (4 cachelines)
xdp_buff : Used by BPF XDP-prog, allocated on call stack
xdp_frame: xdp_buff info state compressed, used by XDP-redirect

No allocation, placed in top of data-frame (currently 32 bytes)
HW specific “descriptor” with info and pointer to (DMA) data buffer

contains HW-offloads (see later) that driver transfers to SKB
Exotic details
skb_shared_info : placed inside data-frame (at end), e.g. GRO multi-frame
xdp_rxq_info : Static per RX queue info
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Evolving XDP: Future ideas
Warning: Next slides about crazy future ideas

This stuff might never get implemented!
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Move SKB allocations out of NIC drivers
Goal: Simplify driver, via creating SKB inside network-core code

Happens today via xdp_frame in both veth and cpumap
(Slight hickup: Max frame size unknown, thus lie about skb->truesize)

Issue: SKB’s created this way are lacking HW-offloads like:
HW checksum info (for skb->ip_summed + skb->csum)
HW RX hash (skb_set_hash(hash, type))
(these are almost always needed… tempted to extend xdp_frame)
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Other HW-offloads
Other existing offloads, used by SKBs, but not always enabled

VLAN (__vlan_hwaccel_put_tag())
RX timestamp

HW skb_hwtstamps() (stored in skb_shared_info)
Earlier XDP software timestamp (for skb->tstamp)

RX mark (skb->mark supported by mlx5)

Other potential offloads, which hardware can do (but not used by SKB):

Unique u64 flow identifier key (mlx5 HW)
Higher-level protocol header offsets

RSS-hash can deduce e.g. IPv4/TCP (as frag not marked as TCP)
But NIC HW have full parse info avail
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Blocked by missing HW-offloads
SKB alloc outside NIC driver, blocked by missing HW-offloads. 
The GOAL is to come-up with a Generic Offload Abstraction Layer…

Generic and dynamic way to transfer HW-offload info
Only enable info when needed
Both made available for SKB creation and XDP programs

The big questions are:
Where to store this information?
How to make it dynamic?
What else are we missing?
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Storing generic offload-info
Where to store generic offload-info?

To avoid allocation use packet/frame data area
(1) Extend xdp_frame: imply top of frame head-room
(2) Use XDP meta-data area: located in-front of payload start
(3) Use tail-room (frame-end): Already used for skb_shared_info GRO

No choice done yet…
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Dynamic generic offload-info
Next challenge: How to make this dynamic?

Each driver have own format for HW descriptor
Hopefully BTF can help here?

Drivers could export BTF description of offload-info area
BPF prog wanting to use area, must have matching BTF
But how can kernel-code use BTF desc and transfer to SKB fields?

XDP closer integration with network stack - Jesper Dangaard Brouer < >hawk@kernel.org
17

mailto:hawk@kernel.org


Dependency: Handling multi-frame packets
SKB alloc outside NIC driver, ALSO need XDP multi-frame handling

Multi-frame packets have several use-cases
Jumbo-frames
TSO (TCP Segmentation Offload)
Header split, (L4) headers in first segment, (L7) payload in next

XDP need answer/solution for multi-frame packets
To fully move SKB alloc+setup out of NIC drivers

(SKB use skb_shared_info area to store info on multi-frames)
Design idea/proposal in XDP-project: xdp-multi-buffer01-design.org
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Fun with xdp_frame before SKB alloc
After SKB alloc gets moved out of drivers

What can we now create of crazy stuff?!?
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General idea for xdp_frame handling
Idea: Use xdp_frame for some fast-paths

E.g. forwarding could be accelerated (non localhost deliver)
Fall-back: Create SKB for slow(er) path
Lots of work: adjust functions to work without SKBs
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New (L2) layer with xdp_frame?
Could update netstack (L2) RX-handler to handle xdp_frame packets?

Bridging
Macvlan, ipvlan, macvtap
Bond + Team
OpenVSwitch (OVS)

Likely: Need new L2 RX-handler layer (?)
To support kernels evolutionary development model

(cannot update every user at once, plus out-of-tree users)
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Transport layer XDP
XDP operate at L2 (Eth) or L3 (IP)

Tom Herbert (coined XDP) proposed  = L4 (TCP/UDP)
To gain performance it need to operate on xdp_frame’s
For many fast-path TCP/UDP use-cases, SKB is pure overhead

Much simpler xdp_frame will be sufficient
Let special cases fall-through, alloc+init full SKB

Transport-layer XDP
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More practical
People complain XDP and eBPF is hard to use!?
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XDP-tutorial
Ready to use: XDP Hands-On Tutorial

Basically a full build and testlab environment
Simply git clone and run make:

Testlab works on your (Linux) laptop
via creating veth device and network namespace

https://github.com/xdp-project/xdp-tutorial
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The missing transmit side
XDP is currently only an RX-hook

We want to change that! - but it’s (also) a big task
Tell people to use TC-BPF egress hook, we can do better…
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The missing XDP transmit hook
A real XDP TX hook is needed, for several reasons

Creates symmetry (RX and TX hooks)
XDP-redirect need push-back/flow-control mechanism

Too easily overflow (HW) TX-queues (as qdisc-layer bypassed)
Be careful: don’t re-implement full qdisc layer

Should also run after normal qdisc layer TX-queues
Reason: Like BQL, can choose when qdisc is activated

Allows to implement BQL (Byte-Queue-Limit) as eBPF
Driver TX-q based on xdp_frame, allow SKB to be released earlier
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End: Summary
Kernel now have eBPF programmable network fast-path

that can now compete with kernel-bypass speeds
Not finished: Still lots of development work ahead

Need to cooperate more with kernel netstack
Create BPF-helpers to access kernel tables
How far can we take this: SKBs outside drivers? realistic goal?

XDP-project coordination:
https://github.com/xdp-project/xdp-project
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