\

7 XDP closer integration with
network stack

Jesper Dangaard Brouer

Kernel Developer
Red Hat

Kernel Recipes Conf
Paris, Sep 2019

Q Red Hat XDP closer integration with network stack

Overview: What will you learn?

Audience at Kernel Recipes: Other kernel developers

e But for different kernel sub-systems
e | earn about: kernel network data structures

Hopefully you already heard about XDP (eXpress Data Path) 7 ? ?
e |'ll explain why network sub-system created this...

Future crazy ideas to extend XDP
e (hopefully) in a way that cooperate more with kernel netstack

Give you an easy way to try out XDP and BPF on your laptop

Red Hat XDP closer integration with network stack - Jesper Dangaard Brouer <hawk@kernel.org>

mailto:hawk@kernel.org

Why was XDP needed?

This was about the kernel networking stack staying relevant

e For emerging use-cases and areas

Linux networking stack assumes layer L4-L7/ delivery

e Obviously slow when compared to L2-L3 kernel-bypass solutions
XDP operate at layers L2-L.3

e Shows same performance as these L2-L3 kernel-bypass solutions

The networking OSI layer model:

L2=Ethernet
L3=IPv4/IPv6
L4=TCP/UDP
L7=Applications

Red Hat XDP closer integration with network stack - Jesper Dangaard Brouer <hawk@kernel.org>

mailto:hawk@kernel.org

What is XDP?

What kind of monster did we create with XDP?!?

XDP (eXpress Data Path) is a Linux in-kernel fast-path

e New programmable layer in-front of traditional network stack

= Read, modify, drop, redirect or pass
e For L2-L.3 use-cases: seeing x10 performance improvements!
e Can accelerate in-kernel L2-L3 use-cases (e.g. forwarding)

What is AF_XDP? (the Address Family XDP socket)

e Hybrid kernel-bypass facility
e Delivers raw L2 frames into userspace (in SPSC queue)

Red Hat XDP closer integration with network stack - Jesper Dangaard Brouer <hawk@kernel.org>

mailto:hawk@kernel.org

AF_XDP: Used for kernel- bypas s?1?

Did you really say, this can be used for

Sure, build in freedom for kernel-bypass via AF_XDP
e DPDK already have a Poll-Mode driver for AF_XDP
Why is this better, than other (bypass) solutions?

e Flexible sharing of NIC resources, NIC still avail to netstack

e XDP/eBPF prog filters packets using XDP_REDIRECT into AF_XDP socket
= Move selective frames out of kernel, no need to reinject

e | everages existing kernel infrastructure, eco-system and market position

Red Hat XDP closer integration with network stack - Jesper Dangaard Brouer <hawk@kernel.org>

mailto:hawk@kernel.org

How can XDP be (ab)used?

Used or abused?

e Freedom re-implement everything (when bypassing the kernel)
e Or freedom to shoot yourself in the foot?

Red Hat XDP closer integration with network stack - Jesper Dangaard Brouer <hawk@kernel.org>

mailto:hawk@kernel.org

Simple view on how XDP gains speed

XDP speed gains comes from

e Avoiding memory allocations
m no SKB allocations and no-init (memset zero 4 cache-lines)
e Bulk processing of frames
e Very early access to frame (in driver code after DMA sync)
e Ability to (large parts) of kernel

Red Hat XDP closer integration with network stack - Jesper Dangaard Brouer <hawk@kernel.org>

mailto:hawk@kernel.org

Skipping code: Efficient optimization
Skipping code: Imply skipping features provided by network stack

e Gave users freedom to e.g. skip netfilter or route-lookup
e But users have to re-implement features they actually needed
= Sometimes cumbersome via BPF-maps

Avoid re-implement features:
e Evolve XDP via BPF-helpers

Red Hat XDP closer integration with network stack - Jesper Dangaard Brouer <hawk@kernel.org>

mailto:hawk@kernel.org

Evolving XDP via BPF-helpers

We should encourage adding helpers instead of duplicating data in BPF maps

Think of XDP as a software offload layer for the kernel netstack
e Simply setup and use the Linux netstack, but accelerate parts of it with XDP
IP routing good example: Access routing table from XDP via BPF helpers (v4.18)

e Let Linux handle routing (daemons) and neighbour/ARP lookups
e Talk at LPC-2018 (David Ahern): Leveraging Kernel Tables with XDP

Obvious next target: Bridge lookup helper

e |ike IP routing: transparent XDP acceleration of bridge forwarding
m Fallback for ARP lookups, flooding etc.
e Huge potential performance boost for Linux bridge use cases!

Red Hat XDP closer integration with network stack - Jesper Dangaard Brouer <hawk@kernel.org>

http://vger.kernel.org/lpc-networking2018.html#session-1
mailto:hawk@kernel.org

Understand networking packet data
structures

To understand next slides and (XDP) kernel networking

e Need to know difference between some struct’s
e Used for describing and pointing to actual packet data

Red Hat XDP closer integration with network stack - Jesper Dangaard Brouer <hawk@kernel.org>

10

mailto:hawk@kernel.org

Fundamental struct’s

The struct’s describing data-frame at different levels

e sk_buff:Good old SKB, allocated from SLAB/kmem_cache (4 cachelines)
e Xdp_buff :Usedby BPF XDP-prog, allocated on call stack
e xdp_Tframe: xdp_buff info state compressed, used by XDP-redirect

= No allocation, placed in top of data-frame (currently 32 bytes)
e HW specific "descriptor” with info and pointer to (DMA) data buffer
= contains HW-offloads (see later) that driver transfers to SKB

E xotic details

e skb_shared_info: placed inside data-frame (at end), e.g. GRO multi-frame
e xdp_rxg_1info: Static per RX queue info

Red Hat XDP closer integration with network stack - Jesper Dangaard Brouer <hawk@kernel.org>
11

mailto:hawk@kernel.org

Evolving XDP: Future ideas

Warning: Next slides about

future ideas

e This stuff might never get implemented!

Red Hat

XDP closer integration with network stack -

Jesper Dangaard Brouer <hawk@kernel.org>

12

mailto:hawk@kernel.org

Move SKB allocations out of NIC drivers

Goal: Simplify driver, via creating SKB inside network-core code

e Happens today via Xxdp_frame in both veth and cpumap
e (Slight hickup: Max frame size unknown, thus lie about skb->truesize)

: SKB's created this way are lacking HW-offloads like:

e HW checksum info (for skb->1p_summed + skb->csum)
e HW RX hash (skb_set_hash(hash, type))
e (these are almost always needed... tempted to extend xdp_frame)

Red Hat XDP closer integration with network stack - Jesper Dangaard Brouer <hawk@kernel.org>

13

mailto:hawk@kernel.org

Other HW-offloads

Other existing offloads, used by SKBs, but not always enabled

e VLAN (__vlan_hwaccel_put_tag())
e RX timestamp

= HW skb_hwtstamps() (storedin skb_shared_info)
m Earlier XDP software timestamp (for skb->tstamp)
e RX mark (skb->mark supported by mix5)

Other potential offloads, which hardware can do (but not used by SKB):

e Unique u64 flow identifier key (mIx5 HW)
e Higher-level protocol header offsets

= RSS-hash can deduce eg. IPv4/TCP (as frag not marked as TCP)
= But NIC HW have full parse info avail

Red Hat XDP closer integration with network stack

Jesper Dangaard Brouer <hawk@kernel.org>

14

mailto:hawk@kernel.org

Blocked by missing HW-offloads

SKB alloc outside NIC driver, blocked by missing HW-offloads.
The GOAL is to come-up with a Generic Offload Abstraction Layer...

Generic and dynamic way to transfer HW-offload info

e Only enable info when needed
o made available for SKB creation and XDP programs

The big questions are:

e Where to store this information?
e How to make it dynamic?
e What else are we missing?

Red Hat XDP closer integration with network stack - Jesper Dangaard Brouer <hawk@kernel.org>

15

mailto:hawk@kernel.org

Storing generic offload-info

Where to store generic offload-info?

e To avoid allocation use packet/frame data area
m (1) Extend xdp_frame: imply top of frame head-room
m (2) Use XDP meta-data area: located in-front of payload start
m (3) Use tail-room (frame-end): Already used for skb_shared_info GRO

No choice done yet...

Red Hat XDP closer integration with network stack - Jesper Dangaard Brouer <hawk@kernel.org>

[S

mailto:hawk@kernel.org

Dynamic generic offload-info

Next challenge: How to make this dynamic?

e Each driver have own format for HW descriptor
e Hopefully BTF can help here?

Drivers could export BTF description of offload-info area

e BPF prog wanting to use area, must have matching BTF
© can kernel-code use BTF desc and transfer to SKB fields?

Red Hat XDP closer integration with network stack - Jesper Dangaard Brouer <hawk@kernel.org>

17

mailto:hawk@kernel.org

Dependency: Handling multi-frame packets

SKB alloc outside NIC driver, ALSO need XDP multi-frame handling

Multi-frame packets have several use-cases

e Jumbo-frames
e TSO (TCP Segmentation Offload)

e Header split, (L4) headers in first segment, (L/) payload in next
XDP need answer/solution for multi-frame packets
e To fully move SKB alloctsetup out of NIC drivers

m (SKB use skb_shared_info area to store info on multi-frames)
e Design idea/proposal in XDP-project: xdp-multi-bufferOl-design.org

Red Hat XDP closer integration with network stack - Jesper Dangaard Brouer <hawk@kernel.org>

18

https://github.com/xdp-project/xdp-project/blob/master/areas/core/xdp-multi-buffer01-design.org
mailto:hawk@kernel.org

Fun with xdp_frame before SKB alloc

After SKB alloc gets moved out of drivers

e What can we now create of crazy stuff?!?

Red Hat XDP closer integration with network stack - Jesper Dangaard Brouer <hawk@kernel.org>

19

mailto:hawk@kernel.org

General idea for xdp_frame handling

ldea: Use xdp_frame for some fast-paths

e E.g. forwarding could be accelerated (non localhost deliver)
e Fall-back: Create SKB for slow(er) path

e | ots of work: adjust functions to work without SKBs

Red Hat XDP closer integration with network stack -

Jesper Dangaard Brouer <hawk@kernel.org>

20

mailto:hawk@kernel.org

New (L2) layer with xdp_frame?

Could update netstack (L2) RX-handler to handle xdp_frame packets?
e Bridging

e Macvlan, ipvlan, macvtap

e Bond + Team

e OpenVSwitch (OVS)
Likely: Need new L2 RX-handler layer (?)

e To support kernels evolutionary development model
= (cannot update every user at once, plus out-of-tree users)

Red Hat XDP closer integration with network stack - Jesper Dangaard Brouer <hawk@kernel.org>

21

mailto:hawk@kernel.org

Transport layer XDP

XDP operate at L2 (Eth) or L3 (IP)

e Tom Herbert (coined XDP) proposed Transport-layer XDP = L4 (TCP/UDP)
m To gain performance it need to operate on xdp_frame’'s

= For many fast-path TCP/UDP use-cases, SKB is pure overhead
o Much simpler xdp_frame will be sufficient

o Let special cases fall-through, alloc+init full SKB

Red Hat XDP closer integration with network stack

- Jesper Dangaard Brouer <hawk@kernel.org>

22

https://www.spinics.net/lists/netdev/msg407537.html
mailto:hawk@kernel.org

More practical
People complain XDP and eBPF is hard to use!?

Red Hat

XDP closer integration with network stack -

Jesper Dangaard Brouer <hawk@kernel.org>

23

mailto:hawk@kernel.org

XDP-tutorial

Ready to use: XDP Hands-On Tutorial

e Basically a full build and testlab environment
Simply git clone and run make:

e https://github.com/xdp-project/xdp-tutorial
Testlab works on your (Linux) laptop

e via creating veth device and network namespace

Red Hat XDP closer integration with network stack - Jesper Dangaard Brouer <hawk@kernel.org>

24

https://github.com/xdp-project/xdp-tutorial
mailto:hawk@kernel.org

The missing transmit side

XDP is currently only an RX-hook
e We want to change that! - but it's (also) a big task

Tell people to use TC-BPF egress hook, we can do better...

Red Hat XDP closer integration with network stack - Jesper Dangaard Brouer <hawk@kernel.org>

25

mailto:hawk@kernel.org

The missing XDP transmit hook

A real XDP TX hook is needed, for several reasons

e Creates symmetry (RXand TX hooks)

o XDP-redirect need push-back/flow-control mechanism
= Too easily overflow (HW) TX-queues (as gdisc-layer bypassed)
= Be careful: don't re-implement full gdisc layer

Should also run after normal gdisc layer TX-queues

e Reason: Like BQL, can choose when gdisc is activated
m Allows to implement BQL (Byte-Queue-Limit) as eBPF
e Driver TX-qg based on xdp_frame, allow SKB to be released earlier

Red Hat XDP closer integration with network stack - Jesper Dangaard Brouer <hawk@kernel.org>

26

mailto:hawk@kernel.org

End: Summary

Kernel now have eBPF programmable network fast-path
e that can now compete with kernel-bypass speeds
Not finished: Still lots of development work ahead

e Need to cooperate more with kernel netstack
m Create BPF-helpers to access kernel tables
» How far can we take this: SKBs outside drivers? realistic goal?

XDP-project coordination:

e https://github.com/xdp-project/xdp-project

Red Hat XDP closer integration with network stack - Jesper Dangaard Brouer <hawk@kernel.org>

27

https://github.com/xdp-project/xdp-project
mailto:hawk@kernel.org

