
Jesper Dangaard Brouer
Kernel Developer

Red Hat

Kernel Recipes Conf
Paris, Sep 2019

XDP closer integration with
network stack

XDP closer integration with network stack
1

Overview: What will you learn?
Audience at Kernel Recipes: Other kernel developers

But for different kernel sub-systems
Learn about: kernel network data structures

Hopefully you already heard about XDP (eXpress Data Path) ? ? ?
I’ll explain why network sub-system created this…

Future crazy ideas to extend XDP
(hopefully) in a way that cooperate more with kernel netstack

Give you an easy way to try out XDP and BPF on your laptop

XDP closer integration with network stack - Jesper Dangaard Brouer < >hawk@kernel.org
2

mailto:hawk@kernel.org

Why was XDP needed?
This was about the kernel networking stack staying relevant

For emerging use-cases and areas
Linux networking stack assumes layer L4-L7 delivery

Obviously slow when compared to L2-L3 kernel-bypass solutions
XDP operate at layers L2-L3

Shows same performance as these L2-L3 kernel-bypass solutions

The networking OSI layer model:

L2=Ethernet
L3=IPv4/IPv6
L4=TCP/UDP
L7=Applications

XDP closer integration with network stack - Jesper Dangaard Brouer < >hawk@kernel.org
3

mailto:hawk@kernel.org

What is XDP?
What kind of monster did we create with XDP?!?

XDP (eXpress Data Path) is a Linux in-kernel fast-path
New programmable layer in-front of traditional network stack

Read, modify, drop, redirect or pass
For L2-L3 use-cases: seeing x10 performance improvements!
Can accelerate in-kernel L2-L3 use-cases (e.g. forwarding)

What is AF_XDP? (the Address Family XDP socket)
Hybrid kernel-bypass facility
Delivers raw L2 frames into userspace (in SPSC queue)

XDP closer integration with network stack - Jesper Dangaard Brouer < >hawk@kernel.org
4

mailto:hawk@kernel.org

AF_XDP: Used for kernel-bypass?!?
Did you really say, this can be used for bypassing the Linux kernel netstack ?

Sure, build in freedom for kernel-bypass via AF_XDP
DPDK already have a Poll-Mode driver for AF_XDP

Why is this better, than other (bypass) solutions?
Flexible sharing of NIC resources, NIC still avail to netstack
XDP/eBPF prog filters packets using XDP_REDIRECT into AF_XDP socket

Move selective frames out of kernel, no need to reinject
Leverages existing kernel infrastructure, eco-system and market position

XDP closer integration with network stack - Jesper Dangaard Brouer < >hawk@kernel.org
5

mailto:hawk@kernel.org

How can XDP be (ab)used?
Used or abused?

Freedom re-implement everything (when bypassing the kernel)
Or freedom to shoot yourself in the foot?

XDP closer integration with network stack - Jesper Dangaard Brouer < >hawk@kernel.org
6

mailto:hawk@kernel.org

Simple view on how XDP gains speed
XDP speed gains comes from

Avoiding memory allocations
no SKB allocations and no-init (memset zero 4 cache-lines)

Bulk processing of frames
Very early access to frame (in driver code after DMA sync)
Ability to skip (large parts) of kernel code

XDP closer integration with network stack - Jesper Dangaard Brouer < >hawk@kernel.org
7

mailto:hawk@kernel.org

Skipping code: Efficient optimization
Skipping code: Imply skipping features provided by network stack

Gave users freedom to e.g. skip netfilter or route-lookup
But users have to re-implement features they actually needed

Sometimes cumbersome via BPF-maps
Avoid re-implement features:

Evolve XDP via BPF-helpers

XDP closer integration with network stack - Jesper Dangaard Brouer < >hawk@kernel.org
8

mailto:hawk@kernel.org

Evolving XDP via BPF-helpers
We should encourage adding helpers instead of duplicating data in BPF maps

Think of XDP as a software offload layer for the kernel netstack
Simply setup and use the Linux netstack, but accelerate parts of it with XDP

IP routing good example: Access routing table from XDP via BPF helpers (v4.18)
Let Linux handle routing (daemons) and neighbour/ARP lookups
Talk at LPC-2018 (David Ahern):

Obvious next target: Bridge lookup helper
Like IP routing: transparent XDP acceleration of bridge forwarding

Fallback for ARP lookups, flooding etc.
Huge potential performance boost for Linux bridge use cases!

Leveraging Kernel Tables with XDP

XDP closer integration with network stack - Jesper Dangaard Brouer < >hawk@kernel.org
9

http://vger.kernel.org/lpc-networking2018.html#session-1
mailto:hawk@kernel.org

Understand networking packet data
structures
To understand next slides and (XDP) kernel networking

Need to know difference between some struct’s
Used for describing and pointing to actual packet data

XDP closer integration with network stack - Jesper Dangaard Brouer < >hawk@kernel.org
10

mailto:hawk@kernel.org

Fundamental struct’s
The struct’s describing data-frame at different levels
sk_buff : Good old SKB, allocated from SLAB/kmem_cache (4 cachelines)
xdp_buff : Used by BPF XDP-prog, allocated on call stack
xdp_frame: xdp_buff info state compressed, used by XDP-redirect

No allocation, placed in top of data-frame (currently 32 bytes)
HW specific “descriptor” with info and pointer to (DMA) data buffer

contains HW-offloads (see later) that driver transfers to SKB
Exotic details
skb_shared_info : placed inside data-frame (at end), e.g. GRO multi-frame
xdp_rxq_info : Static per RX queue info

XDP closer integration with network stack - Jesper Dangaard Brouer < >hawk@kernel.org
11

mailto:hawk@kernel.org

Evolving XDP: Future ideas
Warning: Next slides about crazy future ideas

This stuff might never get implemented!

XDP closer integration with network stack - Jesper Dangaard Brouer < >hawk@kernel.org
12

mailto:hawk@kernel.org

Move SKB allocations out of NIC drivers
Goal: Simplify driver, via creating SKB inside network-core code

Happens today via xdp_frame in both veth and cpumap
(Slight hickup: Max frame size unknown, thus lie about skb->truesize)

Issue: SKB’s created this way are lacking HW-offloads like:
HW checksum info (for skb->ip_summed + skb->csum)
HW RX hash (skb_set_hash(hash, type))
(these are almost always needed… tempted to extend xdp_frame)

XDP closer integration with network stack - Jesper Dangaard Brouer < >hawk@kernel.org
13

mailto:hawk@kernel.org

Other HW-offloads
Other existing offloads, used by SKBs, but not always enabled

VLAN (__vlan_hwaccel_put_tag())
RX timestamp

HW skb_hwtstamps() (stored in skb_shared_info)
Earlier XDP software timestamp (for skb->tstamp)

RX mark (skb->mark supported by mlx5)

Other potential offloads, which hardware can do (but not used by SKB):

Unique u64 flow identifier key (mlx5 HW)
Higher-level protocol header offsets

RSS-hash can deduce e.g. IPv4/TCP (as frag not marked as TCP)
But NIC HW have full parse info avail

XDP closer integration with network stack - Jesper Dangaard Brouer < >hawk@kernel.org
14

mailto:hawk@kernel.org

Blocked by missing HW-offloads
SKB alloc outside NIC driver, blocked by missing HW-offloads.
The GOAL is to come-up with a Generic Offload Abstraction Layer…

Generic and dynamic way to transfer HW-offload info
Only enable info when needed
Both made available for SKB creation and XDP programs

The big questions are:
Where to store this information?
How to make it dynamic?
What else are we missing?

XDP closer integration with network stack - Jesper Dangaard Brouer < >hawk@kernel.org
15

mailto:hawk@kernel.org

Storing generic offload-info
Where to store generic offload-info?

To avoid allocation use packet/frame data area
(1) Extend xdp_frame: imply top of frame head-room
(2) Use XDP meta-data area: located in-front of payload start
(3) Use tail-room (frame-end): Already used for skb_shared_info GRO

No choice done yet…

XDP closer integration with network stack - Jesper Dangaard Brouer < >hawk@kernel.org
16

mailto:hawk@kernel.org

Dynamic generic offload-info
Next challenge: How to make this dynamic?

Each driver have own format for HW descriptor
Hopefully BTF can help here?

Drivers could export BTF description of offload-info area
BPF prog wanting to use area, must have matching BTF
But how can kernel-code use BTF desc and transfer to SKB fields?

XDP closer integration with network stack - Jesper Dangaard Brouer < >hawk@kernel.org
17

mailto:hawk@kernel.org

Dependency: Handling multi-frame packets
SKB alloc outside NIC driver, ALSO need XDP multi-frame handling

Multi-frame packets have several use-cases
Jumbo-frames
TSO (TCP Segmentation Offload)
Header split, (L4) headers in first segment, (L7) payload in next

XDP need answer/solution for multi-frame packets
To fully move SKB alloc+setup out of NIC drivers

(SKB use skb_shared_info area to store info on multi-frames)
Design idea/proposal in XDP-project: xdp-multi-buffer01-design.org

XDP closer integration with network stack - Jesper Dangaard Brouer < >hawk@kernel.org
18

https://github.com/xdp-project/xdp-project/blob/master/areas/core/xdp-multi-buffer01-design.org
mailto:hawk@kernel.org

Fun with xdp_frame before SKB alloc
After SKB alloc gets moved out of drivers

What can we now create of crazy stuff?!?

XDP closer integration with network stack - Jesper Dangaard Brouer < >hawk@kernel.org
19

mailto:hawk@kernel.org

General idea for xdp_frame handling
Idea: Use xdp_frame for some fast-paths

E.g. forwarding could be accelerated (non localhost deliver)
Fall-back: Create SKB for slow(er) path
Lots of work: adjust functions to work without SKBs

XDP closer integration with network stack - Jesper Dangaard Brouer < >hawk@kernel.org
20

mailto:hawk@kernel.org

New (L2) layer with xdp_frame?
Could update netstack (L2) RX-handler to handle xdp_frame packets?

Bridging
Macvlan, ipvlan, macvtap
Bond + Team
OpenVSwitch (OVS)

Likely: Need new L2 RX-handler layer (?)
To support kernels evolutionary development model

(cannot update every user at once, plus out-of-tree users)

XDP closer integration with network stack - Jesper Dangaard Brouer < >hawk@kernel.org
21

mailto:hawk@kernel.org

Transport layer XDP
XDP operate at L2 (Eth) or L3 (IP)

Tom Herbert (coined XDP) proposed = L4 (TCP/UDP)
To gain performance it need to operate on xdp_frame’s
For many fast-path TCP/UDP use-cases, SKB is pure overhead

Much simpler xdp_frame will be sufficient
Let special cases fall-through, alloc+init full SKB

Transport-layer XDP

XDP closer integration with network stack - Jesper Dangaard Brouer < >hawk@kernel.org
22

https://www.spinics.net/lists/netdev/msg407537.html
mailto:hawk@kernel.org

More practical
People complain XDP and eBPF is hard to use!?

XDP closer integration with network stack - Jesper Dangaard Brouer < >hawk@kernel.org
23

mailto:hawk@kernel.org

XDP-tutorial
Ready to use: XDP Hands-On Tutorial

Basically a full build and testlab environment
Simply git clone and run make:

Testlab works on your (Linux) laptop
via creating veth device and network namespace

https://github.com/xdp-project/xdp-tutorial

XDP closer integration with network stack - Jesper Dangaard Brouer < >hawk@kernel.org
24

https://github.com/xdp-project/xdp-tutorial
mailto:hawk@kernel.org

The missing transmit side
XDP is currently only an RX-hook

We want to change that! - but it’s (also) a big task
Tell people to use TC-BPF egress hook, we can do better…

XDP closer integration with network stack - Jesper Dangaard Brouer < >hawk@kernel.org
25

mailto:hawk@kernel.org

The missing XDP transmit hook
A real XDP TX hook is needed, for several reasons

Creates symmetry (RX and TX hooks)
XDP-redirect need push-back/flow-control mechanism

Too easily overflow (HW) TX-queues (as qdisc-layer bypassed)
Be careful: don’t re-implement full qdisc layer

Should also run after normal qdisc layer TX-queues
Reason: Like BQL, can choose when qdisc is activated

Allows to implement BQL (Byte-Queue-Limit) as eBPF
Driver TX-q based on xdp_frame, allow SKB to be released earlier

XDP closer integration with network stack - Jesper Dangaard Brouer < >hawk@kernel.org
26

mailto:hawk@kernel.org

End: Summary
Kernel now have eBPF programmable network fast-path

that can now compete with kernel-bypass speeds
Not finished: Still lots of development work ahead

Need to cooperate more with kernel netstack
Create BPF-helpers to access kernel tables
How far can we take this: SKBs outside drivers? realistic goal?

XDP-project coordination:
https://github.com/xdp-project/xdp-project

XDP closer integration with network stack - Jesper Dangaard Brouer < >hawk@kernel.org
27

https://github.com/xdp-project/xdp-project
mailto:hawk@kernel.org

