
 1/16 Recent Linux packet processing performance improvements

Jesper Dangaard Brouer (Red Hat)
John Fastabend (Intel)

John Ronciak (Intel)

Linux Plumbers Conference 16th Oct 2014

Session:

Linux packet processing performance improvements

TX bulking and qdisc layer



 2/16 Recent Linux packet processing performance improvements

What will you learn?What will you learn?

● Unlocked full potential of driver (TX only)
● The xmit_more API for bulking
● Challenge bulking without adding latency

– Qdisc layer bulk dequeue, depend on BQL

– Existing aggregation GSO/GRO

● Qdisc locking is nasty
– Amortization locking cost

– Future: Lockless qdisc

● What about RX?



 3/16 Recent Linux packet processing performance improvements

Unlocked: Driver TX potentialUnlocked: Driver TX potential

● Pktgen 14.8Mpps single core (10G wirespeed)
● Primary trick: Bulking packet (descriptors) to HW
● What is going on:

– Defer tailptr write, which notifies HW
● Very expensive write to none-cacheable mem

– Hard to perf profile
● Write to device

– does not showup at MMIO point
– Next LOCK op is likely “blamed”



 4/16 Recent Linux packet processing performance improvements

API skb->xmit_moreAPI skb->xmit_more

● SKB extended with xmit_more indicator
– Stack use this to indicate

– another packet will be given immediately
● After/when ->ndo_start_xmit() returns

● Driver usage
– Unless TX queue filled

– Simply add the packet to the TX queue

– And defer the expensive indication to the HW



 5/16 Recent Linux packet processing performance improvements

Challenge: Bulking without added latencyChallenge: Bulking without added latency

● Hard part:
– Use bulk API without adding latency

● Principal: Only bulk when really needed
– Based on solid indication from stack

● Do NOT speculative delay TX
– Don't bet on packets arriving shortly

– Hard to resist...
● as benchmarking would look good



 6/16 Recent Linux packet processing performance improvements

Use SKB lists for bulkingUse SKB lists for bulking

● Changed: Stack xmit layer
– Adjusted to work with SKB lists

– Simply use existing skb->next ptr

● E.g. See dev_hard_start_xmit()
– skb->next ptr simply used as xmit_more indication

● Lock amortization
– TXQ lock no-longer per packet cost

– dev_hard_start_xmit() send entire SKB list

– while holding TXQ lock (HARD_TX_LOCK) 



 7/16 Recent Linux packet processing performance improvements

Existing aggregation in stack GRO/GSOExisting aggregation in stack GRO/GSO

● Stack already have packet aggregation facilities
– GRO (Generic Receive Offload)

– GSO (Generic Segmentation Offload)

– TSO (TCP Segmentation Offload)

● Allowing bulking of these
– Introduce no added latency

● Xmit layer adjustments allowed this
– validate_xmit_skb() handles segmentation if needed



 8/16 Recent Linux packet processing performance improvements

Qdisc layer bulk dequeueQdisc layer bulk dequeue

● A queue in a qdisc
– Very solid opportunity for bulking

● Already delayed, easy to construct skb-list

● Rare case of reducing latency
– Decreasing cost of dequeue (locks) and HW TX

● Before: a per packet cost
● Now: cost amortized over packets

● Qdisc locking have extra locking cost
– Due to __QDISC___STATE_RUNNING state

– Only single CPU run in dequeue (per qdisc)



 9/16 Recent Linux packet processing performance improvements

Qdisc locking is nastyQdisc locking is nasty

● Always 6 LOCK operations (6 * 8ns = 48ns)

– Lock qdisc(root_lock) (also for direct xmit case)

● Enqueue + possible Dequeue
– Enqueue can exit if other CPU is running deq
– Dequeue takes __QDISC___STATE_RUNNING

– Unlock qdisc(root_lock)

– Lock TXQ

● Xmit to HW

– Unlock TXQ

– Lock qdisc(root_lock) (can release STATE_RUNNING)

● Check for more/newly enqueued pkts
– Softirq reschedule (if quota or need_sched)

– Unlock qdisc(root_lock)



 10/16 Recent Linux packet processing performance improvements

Qdisc bulking need BQLQdisc bulking need BQL

● Only support qdisc bulking for BQL drivers
– Implement BQL in your driver now!

● Needed to avoid overshooting NIC capacity
– Overshooting cause requeue of packets

● Current qdisc layer requeue cause
– Head-of-Line blocking

– Future: better requeue in individual qdiscs?

● Extensive experiments show
– BQL is very good at limiting requeues



 11/16 Recent Linux packet processing performance improvements

Future work (qdisc)Future work (qdisc)

● Qdisc proper requeue facility
– Only implement for qdisc's that care

– BQL might reduce requeues enough

● Allow bulk for qdisc one-to-many TXQ's
– Current limited to flag TCQ_F_ONETXQUEUE

– Requires some fixes to requeue system

● Test on small OpenWRT routers
– CPU saving benefit might be larger



 12/16 Recent Linux packet processing performance improvements

Future: Lockless qdiscFuture: Lockless qdisc

● Motivation for lockless qdisc (cmpxchg based)
– Direct xmit case (qdisc len==0) “fast-path”

● Still requires taking all 6 locks!

– Enqueue cost reduced (qdisc len > 0)
● from 16ns to 10ns

● Measurement show huge potential for saving
– (lockless ring queue cmpxchg base implementation)

– If TCQ_F_CAN_BYPASS saving 60ns
● Difficult to implement 100% correct

– Not allowing direct xmit case: saving 50ns



 13/16 Recent Linux packet processing performance improvements

Qdisc RCU statusQdisc RCU status

● Qdisc layer change
– Needed to support lockless qdisc

– All classifiers converted to RCU

– Bstats/qstats per CPU
● Do we want xmit stats per cpu?



 14/16 Recent Linux packet processing performance improvements

Ingress qdiscIngress qdisc

● Audit RCU paths one more time.
● Remove ingress qdisc lock



 15/16 Recent Linux packet processing performance improvements

What about RX?What about RX?

● TX looks good now
– How do we fix RX?

● Experiments show
– Highly tuned setup RX max 6.5Mpps

– Forward test, single CPU only 1-2Mpps

● Alexie started optimizing the RX path
– from 6.5 Mpps to 9.4 Mpps

● via build_skb() and skb prefetch tunning

http://thread.gmane.org/gmane.linux.network/333150


 16/16 Recent Linux packet processing performance improvements

The EndThe End

● Thanks
– Getting to this level of performance have been the 

jointed work and feedback from many people

● Download slides here:
– http://people.netfilter.org/hawk/presentations/

● Discussion...


	Frontpage
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16

