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What will you learn?

Unlocked full potential of driver (TX only)
* The xmit_more API for bulking

Challenge bulking without adding latency
- Qdisc layer bulk dequeue, depend on BQL

- Existing aggregation GSO/GRO

Qdisc locking Is nasty
- Amortization locking cost
- Future: Lockless gdisc

What about RX?
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Unlocked: Driver TX potential

* Pktgen 14.8Mpps single core (10G wirespeed)
* Primary trick: Bulking packet (descriptors) to HW
* What is going on:
- Defer tailptr write, which notifies HW
* Very expensive write to none-cacheable mem
- Hard to perf profile

* Write to device

- does not showup at MMIO point
- Next LOCK op is likely “blamed”

3/16 Recent Linux packet processing performance improvements Qnte,l 0



APl skb->xmit_more

« SKB extended with xmit_more indicator
- Stack use this to indicate
- another packet will be given immediately
« After/when ->ndo_start_xmit() returns
* Driver usage
- Unless TX queue filled
- Simply add the packet to the TX gqueue
- And defer the expensive indication to the HW
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Challenge: Bulking without added latency

 Hard part:

- Use bulk API without adding latency
* Principal: Only bulk when really needed

- Based on solid indication from stack
Do NOT speculative delay TX

- Don't bet on packets arriving shortly

- Hard to resist...
e as benchmarking would look good
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Use SKB lists for bulking

 Changed: Stack xmit layer

- Adjusted to work with SKB lists

- Simply use existing skb->next ptr
 E.g. See dev_hard_start_xmit()

- skb->next ptr simply used as xmit_more indication
* Lock amortization

- TXQ lock no-longer per packet cost

- dev_hard_start_xmit() send entire SKB list

— while holding TXQ lock (HARD_TX_LOCK)
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Existing aggregation in stack GRO/GSO

« Stack already have packet aggregation facilities
- GRO (Generic Receive Offload)
- GSO (Generic Segmentation Offload)
- TSO (TCP Segmentation Offload)
» Allowing bulking of these
- Introduce no added latency

« Xmit layer adjustments allowed this

- validate _xmit_skb() handles segmentation if needed
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Qdisc layer bulk dequeue

 Aqueue in a gdisc

- Very solid opportunity for bulking
« Already delayed, easy to construct skb-list
 Rare case of reducing latency

- Decreasing cost of dequeue (locks) and HW TX

« Before: a per packet cost
 Now: cost amortized over packets

« Qdisc locking have extra locking cost
- Dueto  QDISC  STATE_RUNNING state
- Only single CPU run in dequeue (per gdisc)
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Qdisc locking Is nasty

* Always 6 LOCK operations (6 * 8ns = 48ns)

- Lock gdisc(root_lock) (also for direct xmit case)

 Engqueue + possible Dequeue

- Enqueue can exit if other CPU is running deq
- Dequeue takes  QDISC  STATE_RUNNING

- Unlock qgdisc(root_lock)
- Lock TXQ

e Xmitto HW
- Unlock TXQ

- Lock gdisc(root_lock) (can release STATE_RUNNING)

e Check for more/newly enqueued pkts
- Softirg reschedule (if quota or need_sched)
- Unlock gdisc(root_lock)
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Qdisc bulking need BOQL

Only support gdisc bulking for BOL drivers
- Implement BOQL in your driver now!

Needed to avoid overshooting NIC capacity
- Overshooting cause requeue of packets

Current gdisc layer reqgueue cause
- Head-of-Line blocking
- Future: better requeue in individual qdiscs?

Extensive experiments show
- BQL is very good at limiting requeues
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Future work (gdisc)

» Qdisc proper requeue facility
- Only implement for qdisc's that care
- BQL might reduce requeues enough
» Allow bulk for gdisc one-to-many TXQ's
— Current limited to flag TCQ_F_ONETXQUEUE
- Requires some fixes to requeue system
* Test on small OpenWRT routers
- CPU saving benefit might be larger
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Future: Lockless gdisc

* Motivation for lockless qgdisc (cmpxchg based)

- Direct xmit case (qdisc len==0) “fast-path”
« Still requires taking all 6 locks!
- Engueue cost reduced (gdisc len > 0)

e from 16ns to 10ns
 Measurement show huge potential for saving

- (lockless ring queue cmpxchg base implementation)

- If TCQ_F _CAN_BYPASS saving 60ns

e Difficult to implement 100% correct
- Not allowing direct xmit case: saving 50ns
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Qdisc RCU status

* Qdisc layer change
- Needed to support lockless qdisc
- All classifiers converted to RCU

- Bstats/gstats per CPU
« Do we want xmit stats per cpu?
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* Audit RCU paths one more time.

* Remove ingress gdisc lock
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What about RX?

 TX looks good now

- How do we fix RX?
* Experiments show

- Highly tuned setup RX max 6.5Mpps

- Forward test, single CPU only 1-2Mpps
* Alexie started optimizing the RX path

- from 6.5 Mpps to 9.4 Mpps
e via build_skb() and skb prefetch tunning
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http://thread.gmane.org/gmane.linux.network/333150

The End

e Thanks

- Getting to this level of performance have been the
jointed work and feedback from many people

 Download slides here:
- http://people.netfilter.org/hawk/presentations/

 Discussion...
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