- redhat

Session;

Linux packet processing performance improvements

TX bulking and qdisc layer

Jesper Dangaard Brouer (Red Hat)
John Fastabend (Intel)
John Ronciak (Intel)

Linux Plumbers Conference 16" Oct 2014

What will you learn?

Unlocked full potential of driver (TX only)
* The xmit_more API for bulking

Challenge bulking without adding latency
- Qdisc layer bulk dequeue, depend on BQL

- Existing aggregation GSO/GRO

Qdisc locking Is nasty
- Amortization locking cost
- Future: Lockless gdisc

What about RX?

2/16 Recent Linux packet processing performance improvements Qnte,l 0

Unlocked: Driver TX potential

* Pktgen 14.8Mpps single core (10G wirespeed)
* Primary trick: Bulking packet (descriptors) to HW
* What is going on:
- Defer tailptr write, which notifies HW
* Very expensive write to none-cacheable mem
- Hard to perf profile

* Write to device

- does not showup at MMIO point
- Next LOCK op is likely “blamed”

3/16 Recent Linux packet processing performance improvements Qnte,l 0

APl skb->xmit_more

« SKB extended with xmit_more indicator
- Stack use this to indicate
- another packet will be given immediately
« After/when ->ndo_start_xmit() returns
* Driver usage
- Unless TX queue filled
- Simply add the packet to the TX gqueue
- And defer the expensive indication to the HW

4/16 Recent Linux packet processing performance improvements Qnte,l 0

Challenge: Bulking without added latency

 Hard part:

- Use bulk API without adding latency
* Principal: Only bulk when really needed

- Based on solid indication from stack
Do NOT speculative delay TX

- Don't bet on packets arriving shortly

- Hard to resist...
e as benchmarking would look good

5/16 Recent Linux packet processing performance improvements

Use SKB lists for bulking

 Changed: Stack xmit layer

- Adjusted to work with SKB lists

- Simply use existing skb->next ptr
 E.g. See dev_hard_start_xmit()

- skb->next ptr simply used as xmit_more indication
* Lock amortization

- TXQ lock no-longer per packet cost

- dev_hard_start_xmit() send entire SKB list

— while holding TXQ lock (HARD_TX_LOCK)

6/16 Recent Linux packet processing performance improvements Qnte,l 0

Existing aggregation in stack GRO/GSO

« Stack already have packet aggregation facilities
- GRO (Generic Receive Offload)
- GSO (Generic Segmentation Offload)
- TSO (TCP Segmentation Offload)
» Allowing bulking of these
- Introduce no added latency

« Xmit layer adjustments allowed this

- validate _xmit_skb() handles segmentation if needed

7/16 Recent Linux packet processing performance improvements

Qdisc layer bulk dequeue

 Aqueue in a gdisc

- Very solid opportunity for bulking
« Already delayed, easy to construct skb-list
 Rare case of reducing latency

- Decreasing cost of dequeue (locks) and HW TX

« Before: a per packet cost
 Now: cost amortized over packets

« Qdisc locking have extra locking cost
- Dueto QDISC STATE_RUNNING state
- Only single CPU run in dequeue (per gdisc)

8/16 Recent Linux packet processing performance improvements Qnte,l 0

Qdisc locking Is nasty

* Always 6 LOCK operations (6 * 8ns = 48ns)

- Lock gdisc(root_lock) (also for direct xmit case)

 Engqueue + possible Dequeue

- Enqueue can exit if other CPU is running deq
- Dequeue takes QDISC STATE_RUNNING

- Unlock qgdisc(root_lock)
- Lock TXQ

e Xmitto HW
- Unlock TXQ

- Lock gdisc(root_lock) (can release STATE_RUNNING)

e Check for more/newly enqueued pkts
- Softirg reschedule (if quota or need_sched)
- Unlock gdisc(root_lock)

9/16 Recent Linux packet processing performance improvements 'ntel: 0

Qdisc bulking need BOQL

Only support gdisc bulking for BOL drivers
- Implement BOQL in your driver now!

Needed to avoid overshooting NIC capacity
- Overshooting cause requeue of packets

Current gdisc layer reqgueue cause
- Head-of-Line blocking
- Future: better requeue in individual qdiscs?

Extensive experiments show
- BQL is very good at limiting requeues

10/16 Recent Linux packet processing performance improvements @ ‘

Future work (gdisc)

» Qdisc proper requeue facility
- Only implement for qdisc's that care
- BQL might reduce requeues enough
» Allow bulk for gdisc one-to-many TXQ's
— Current limited to flag TCQ_F_ONETXQUEUE
- Requires some fixes to requeue system
* Test on small OpenWRT routers
- CPU saving benefit might be larger

11/16 Recent Linux packet processing performance improvements @ ‘

Future: Lockless gdisc

* Motivation for lockless qgdisc (cmpxchg based)

- Direct xmit case (qdisc len==0) “fast-path”
« Still requires taking all 6 locks!
- Engueue cost reduced (gdisc len > 0)

e from 16ns to 10ns
 Measurement show huge potential for saving

- (lockless ring queue cmpxchg base implementation)

- If TCQ_F _CAN_BYPASS saving 60ns

e Difficult to implement 100% correct
- Not allowing direct xmit case: saving 50ns

12/16 Recent Linux packet processing performance improvements @ ‘

Qdisc RCU status

* Qdisc layer change
- Needed to support lockless qdisc
- All classifiers converted to RCU

- Bstats/gstats per CPU
« Do we want xmit stats per cpu?

13/16 Recent Linux packet processing performance improvements @ ‘

* Audit RCU paths one more time.

* Remove ingress gdisc lock

14/16 Recent Linux packet processing performance improvements @ ‘

What about RX?

 TX looks good now

- How do we fix RX?
* Experiments show

- Highly tuned setup RX max 6.5Mpps

- Forward test, single CPU only 1-2Mpps
* Alexie started optimizing the RX path

- from 6.5 Mpps to 9.4 Mpps
e via build_skb() and skb prefetch tunning

15/16 Recent Linux packet processing performance improvements @ ‘

http://thread.gmane.org/gmane.linux.network/333150

The End

e Thanks

- Getting to this level of performance have been the
jointed work and feedback from many people

 Download slides here:
- http://people.netfilter.org/hawk/presentations/

 Discussion...

16/16 Recent Linux packet processing performance improvements @ ‘

	Frontpage
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16

