XDP - challenges and future work

Jesper Dangaard Brouer
Red Hat
brouer@redhat.com

ABSTRACT

XDP continues to see significant development, and is far from a
finished system. However, XDP already offers rich facilities for high
performance packet processing, and has seen deployment in several
production systems.

In this work, we provide an overview over some of the ongoing
work around XDP, and seek to start a discussion on some of the
future challenges that need to be addressed to make sure the XDP
ecosystem can continue to flourish.

The overview of ongoing work focuses on the XDP-related topics
being discussed at the LPC networking track in Vancouver, where
we provide a short overview of each topic, and refer to the talk for
more details. These topics include production deployment reports,
using XDP as a backend for the P4 language, zero-copy to userspace
with AF_XDP, and the use of kernel helpers to evolve the XDP
feature set. We also include some performance numbers from the
academic paper on XDP that we have co-authored with many of
the other XDP developers.

In the forward-looking section, we discuss some future develop-
ments that we believe would be beneficial to work on going forward.
These topics include NIC memory models and DMA mapping; mov-
ing SKB allocation out of drivers; the resource allocation around
ndo_xdp_xmit; whether it is still realistic to aim for full support
of all XDP features in all drivers; and the possibility for adding an
XDP egress hook. We are hoping to solicit feedback on these from
the wider community during and after LPC.

1 INTRODUCTION

We have recently finished writing an academic paper on XDP [7],
which includes a description of the architecture, and performance
comparison with DPDK. As part of that work, we have discussed
several areas of potential improvements to XDP as a whole. The
purpose of this paper, and the associated talk, is to broaden that
discussion to the wider community, and to solicit feedback on some
of the future directions we see as beneficial for XDP.

To provide some context to the discussion of future directions,
we first look at some of the work that is currently ongoing. We do
this in the form of an overview of the other XDP-related talk and
topics that will be covered at the networking track at LPC "18. Those
topics will not be covered in detail in this work, but we provide a

This paper is published under the Creative Commons Attribution-ShareAlike 4.0
International (CC-BY-SA 4.0) license. You are free to share and adapt this material in
any medium or format, provided you give appropriate credit, provide a link to the
license, and indicate if any changes were made. In addition, if you build upon the
material you must distribute your contributions under the same license as the original.
See https://creativecommons.org/licenses/by-sa/4.0/ for details.

LPC °18 Networking Track, Nov 13-14, 2018, Vancouver, British Columbia

© 2018 Copyright held by the owner/author(s). Published under Creative Commons
CC-BY-SA 4.0 License.

Toke Hoiland-Jergensen
Karlstad University
toke@toke.dk

120 —*— DPDK
—=#— XDP
100 —+— Linux (raw)

80

Mpps

60
40

20

1 2 3 4 5 6
Number of cores

Figure 1: Packet drop performance. DPDK uses one core for control
tasks, so only 5 are available for packet processing.

short summary of each, with references to the other talks. This is
the topic of Section 2.

Following this, we discuss some possible future developments
that we believe will be beneficial to XDP’s development going
forward. This is the topic of Section 3, and takes the form of a short
summary of each development, which should be seen more as an
invitation to provide feedback than a finished roadmap.

2 CURRENT DEVELOPMENTS AROUND XDP

Even though XDP is still being very actively developed (as the large
number of talks at LPC shows), we have already seen examples of
it being successfully deployed in production environments. High-
profile examples include Cloudflare’s use for DDOS protection [3],
and Facebook’s Katran load balancer [5]. There are also XDP plugins
for Suricata [2], Open vSwitch [10], and even DPDK [14].

There are two other talks at LPC that cover Facebook’s produc-
tion use of XDP in more detail [4, 9].

In this section we seek to give an overview of the current state of
XDP and some of the ongoing development that is being presented
at LPC.

2.1 The state of XDP performance

XDP has been deliberately designed to achieve maximum packet
processing performance. This is achieved by combining several
techniques, such as avoiding memory allocations in the processing
path, and running the processing at the earliest possible time after
packets are received from the hardware. The results of these efforts
is the impressive performance shown in Figures 1 and 2 (both from
the XDP paper [7]).

However, attaining this level of performance is not trivial, and the
smallest optimisations (or conversely, small additions of overhead)


https://creativecommons.org/licenses/by-sa/4.0/

LPC *18 Networking Track, Nov 13-14, 2018, Vancouver, British Columbia

80

—e— DPDK (different NIC)
—#— XDP (same NIC)
—&— XDP (different NIC)

1 2 3 4 5 6
Number of cores

Figure 2: Packet forwarding throughput. Sending and receiving on
the same interface takes up more bandwidth on the same PCI port,
which means we hit the PCI bus limit at 70 Mpps.

can have a large impact. As an example, the Mellanox driver we
used for our tests (m1x5), performs 10 non-inlined function calls for
every packet. Our tests show that the overhead of just the function
calls corresponds to an additional 9 Mpps of performance on a single
core.

Because of this sensitivity to overhead, it is imperative that
thorough performance evaluations of new features are performed
to avoid regressions, and a guiding principle should be that new
features must not negatively affect baseline XDP performance. One
optimisation technique that can be used to achieve this is to move
as many checks as possible to setup time rather than execution
time.

2.2 XDP as a building block

XDP offers low-level functionality on which higher level systems
can be built. As such, it is clear that there is substantial room for
other open source projects to build upon the XDP architecture, and
only time will tell what it will be used for. In our view, this also
means that viewing XDP (and eBPF) as a competitor to something
like P4 is the wrong attitude. Rather, XDP can be one backend
among many for P4, as is already possible with the XDP P4 compiler
backend that will also be discussed at LPC [11].

Another direction we hope to see XDP take, is as an accelerator
for forwarding packets into virtual machines. There’s already sup-
port for redirecting packets directly to the tuntap driver from XDP,
with a single packet copy but bypassing the host OS stack. With
the AF_XDP zero-copy approach, it may be possible to accelerate
this even further.

2.3 Zero-copy to userspace with AF_XDP

A major source of speedup in both XDP and other high-performance
packet processing frameworks, is avoiding the overhead of travers-
ing the userspace to kernel boundary. In XDP this is done by moving
the processing into the kernel which is possible thanks to the eBPF
virtual machine and associated infrastructure. This works really
well for raw packet processing that can be implemented directly

Jesper Dangaard Brouer and Toke Hgiland-Jergensen

as an eBPF program. However, sometimes packets do need to go
out to userspace applications, and avoiding overhead in this case is
important as well. The XDP solution to this problem is AF_XDP,
which is covered in two separate LPC talks [8, 12].

The main benefit of AF_XDP is that it uses the existing XDP
facilities to steer packets to either AF_XDP or the regular network
stack. This avoids taking over the network device entirely, unlike
kernel bypass solutions where control of the entire networking
device is passed to userspace. This also means that the packet
verdict can be decided before the packet leaves the kernel, rather
than forcing the application to reinject frames back into network
stack as described in [3].

AF_XDP has both copy and zero-copy modes, but the userspace
API is the same, and uses Single Producer Single Consumer queues
for communication between kernel and userspace. In both cases,
userspace provides a chunk of pre-allocated memory that is used for
raw frame delivery. In copy mode, the XDP subsystem copies frames
into this memory, and drivers only need to support XDP_REDIRECT.
In zero-copy mode, the userspace-provided memory is used directly
for DMA delivery; supporting this requires more driver changes,
and is currently only supported by the i40e driver.

The zero-copy mode is enabled on a per RX-ring basis, which
again avoids taking over the entire NIC. This also means that NIC
hardware filters can be used for RX-queue steering, to avoid giving
the AF_XDP userspace application memory access to packets that
are unrelated to its function. In zero-copy mode, the XDP_PASS
action will allocate a new memory area and copy the raw frame
contents before delivering the frame to the networking stack. This is
done to avoid crashing the kernel if a userspace application modifies
the packet data while the kernel is parsing it.

2.4 Evolving XDP using helpers

One way to view XDP is as a “software offload”, which can acceler-
ate critical parts of the packet processing path, while allowing the
regular network stack to handle the rest. This is possible because
of the ability to mix custom high-speed packet processing with the
features already implemented in the kernel. The networking stack
already contains high-quality implementations of features such
as routing and bridging, which an XDP program can cherry-pick
among to perform its tasks without incurring the overhead of the
full networking stack. An example of this approach is the routing
lookup helper added by David Ahern, which he covers in a separate
talk [1].

We foresee that the addition of additional kernel helpers as an
important avenue for extending the functionality of XDP. In many
cases, functionality can be implemented by a custom eBPF program
using maps; however, exposing existing kernel functionality has the
advantage of retaining the existing configuration and management
interface of the kernel. In addition, this makes it possible to let the
regular networking stack handle tricky edge cases, allowing the
XDP program to focus on accelerating the fast path. We believe
this is a killer feature of XDP, and we wish to encourage people to
think about adding (or requesting!) such helpers where it makes
sense for their use case.



XDP - challenges and future work

3 FUTURE DIRECTIONS FOR XDP

While the previous section covered ongoing work related to XDP,
in this section we venture a bit further into the future and look at
some of the developments we believe are necessary for the XDP
ecosystem to flourish in the future. As such, this section should be
viewed more as a discussion paper than as a roadmap, and we hope
to collect feedback on these ideas from the rest of the community.

3.1 NIC memory models and DMA mapping

XDP recently (v4.18) acquired support for different memory models
per driver RX-queue, via the xdp_return_frame() and xdp_rxq_
info_reg_mem_model () APIs.

This allows drivers to innovate with new memory models, but
also makes it possible to generalise and share common code to
handle memory recycle schemes for drivers. The page_pool is one
example of such common code. We want to see more drivers need
to use page_pool, and work on page_pool is needed, especially in
the area of keeping frames DMA mapped.

We plan to extend the xdp_return_frame API with a bulking
option, because it can naturally do bulking at DMA-TX completion,
and the page_pool needs this to handle a known weakness (of
concurrent CPUs returning frames to the same RX-queue).

On Intel machines the DMA map/unmap/sync operations are
very lightweight, due the coherency model; however, this might
not be true for other architectures. As XDP has been very Intel
focused, the DMA overhead has not received much attention thus
far. However, the Spectre-V2 mitigation efforts has changed this
picture, and will force us to address the DMA overhead issues even
on Intel machines, due to the indirect call API employed by this
subsystem.

3.2 Moving SKB allocation out of device drivers

One important performance optimisation made possible by XDP_
REDIRECT, is the ability to offload packet processing to another
CPU, by redirecting with a CPU map. This also moves the SKB cre-
ation to the target CPU, where it is created based on the xdp_frame
data. This frees up the CPU running the XDP program to process
more packets without the deep calls into the networking stack.
An example application that benefits from this is DDoS protection
in XDP, which we tested in the XDP paper, and which showed
impressive results (see Figure 3).

We believe it is possible to generalise the mechanism that defers
SKB creation, to the point where this can be moved out of drivers
entirely. The main thing missing before we can achieve this, is
a way to transfer the information from different driver offloads
(e.g., checksums, RX hashing, HW-marking) in a vendor neutral
and generic way. We have high hopes that the metadata work also
presented at LPC [13] will be a way to achieve this.

3.3 Decoupling ndo_xdp_xmit resource
allocation from XDP loading

When XDP redirects a frame out another net_device, then the
ndo_xdp_xmit () function of that device’s driver is called. However,
enabling ndo_xdp_xmit () means a hardware TX queue needs to be
allocated per CPU core, which ties up resources, and so drivers don’t
enable this by default. The problem is that there is currently no

LPC ’18 Networking Track, Nov 13-14, 2018, Vancouver, British Columbia

35
—e— XDP

—=— No XDP

TCP Ktrans/s
[y = ) ) [
o w o w o

(&)

0 5 10 15 20 25
Mpps DOS traffic

Figure 3: DDoS protection performance. Number of TCP transac-
tions per second as the level of attack traffic directed at the server
increases.

interface to enable ndo_xdp_xmit() by itself; rather, it is enabled
when an XDP program is loaded. This leads to the current situation
where a dummy XDP program needs to be loaded on the device
that is the target of an XDP redirect. This needs to be done even if
that device doesn’t need to do any XDP ingress processing itself,
and if no XDP program is loaded on the target device, packets will
just be dropped silently.

Apart from being a bad user interface, this coupling of TX queue
allocation to XDP program loading is a waste of resources in the
case where a device is not going to be a target of redirects. In the
worst case this can make it impossible to use XDP on systems
with many cores (for instance, it was discovered that the ixgbe
driver cannot load XDP on systems with more than 96 CPU cores).
But even on smaller systems, reserving hardware queues that are
not really needed is wasteful. For this reason, we propose that the
enabling ndo_xdp_xmit() is decoupled from the loading of XDP
programs, and that a better trigger mechanism be implemented. An
obvious choice is to enable the functionality when a device is first
inserted into a DEVMAP to be used in XDP_REDIRECT, although
this leaves the question of what to do with the non-map variant of
REDIRECT.

3.4 Partial XDP support in drivers

Not all drivers that support loading XDP programs actually support
the full feature set, and there is currently no way for userspace to
discover what a device actually supports. For instance, if a driver
doesn’t support XDP_REDIRECT, then it can only be detected at
runtime by observing a WARN_ONCE kernel log message; and
afterwards packets are silently dropped. This is problematic for
applications that want to use XDP where it is available, but fall
back to another mechanism when it is not. Suricata is an example
of an application that has experienced this problem.

Originally, the decision not to expose XDP feature bits was taken
based on the assumption that all drivers would implement the
full feature set. However, the question is if this is still a realistic
goal, given that there are still only three hardware drivers that
implement XDP_REDIRECT, and that some users are happy with



LPC *18 Networking Track, Nov 13-14, 2018, Vancouver, British Columbia

just XDP_DROP and XDP_TX support. For this reason, we would
like to bring up this discussion again.

3.5 XDP egress hook

A limitation of the current design of XDP is that programs get no
feedback if a redirect to another device fails. Instead, the packet
is just silently dropped, and the only way to see why is by attach-
ing to the right tracepoint. This is especially problematic when
forwarding packets from a fast device to a slower one. And the
way XDP_REDIRECT is implemented, there is no way for the XDP
program to gain insight into the state of the device being forwarded
to.

We believe that a possible fix for this is to add another eBPF hook
at packet egress from a device, i.e., at the latest possible time before
a packet is put into the device TX ring. At this point, it is possible for
the driver to supply information about the current state of the TX
ring buffer (such as free space), which the eBPF program can react
appropriately to, for example by signaling ingress XDP programs to
send traffic another way if the TX ring is full, or by implementing
AQM:-like reactions when TX ring pressure increases.

A crazy idea is to allow this egress eBPF hook to perform a new
XDP action if it sees the TX ring is full, such as redirecting the
frame out another interface. Allowing the full XDP feature set of
modifying and truncating packet length would also make is possible
to implement a signaling protocol like that described in [6].

4 CONCLUSION

We have provided an overview of the current XDP-related work
being discussed at LPC "18, which includes production deployment
reports, using XDP as a backend for the P4 language, zero-copy to
userspace with AF_XDP, and the use of kernel helpers to evolve
the XDP feature set. We have also discussed some future direc-
tions for XDP development which we believe will be beneficial to
pursue. These include NIC memory models and DMA mapping;
moving SKB allocation out of drivers; the resource allocation around
ndo_xdp_xmit; whether it is still realistic to aim for full support
of all XDP features in all drivers; and the possibility for adding an
XDP egress hook.

It is our hope that this can serve as a useful overview, and as a
catalyst for discussion of the longer-term future for the XDP system
as a whole.

REFERENCES

[1] David Ahern. 2018. Leveraging Kernel Tables with XDP. In Linux Plumbers
Conference 2018 Networking Track.

[2] Suricata authors. 2018. Suricata - eBPF and XDP. https://suricata.readthedocs.
io/en/latest/capture-hardware/ebpf-xdp.html

[3] Gilberto Bertin. 2017. XDP in practice: integrating XDP in our DDoS mitigation
pipeline. In NetDev 2.1 - The Technical Conference on Linux Networking. https:
//netdevconf.org/2.1/session.html?bertin

[4] Anant Deepak, Richard Huang, and Puneet Mehra. 2018. eBPF / XDP based
firewall and packet filtering. In Linux Plumbers Conference 2018 Networking
Track.

[5] Facebook. 2018. Katran source code repository.
facebookincubator/katran

[6] Mark Handley, Costin Raiciu, Alexandru Agache, Andrei Voinescu, Andrew W.
Moore, Gianni Antichi, and Marcin Wojcik. 2017. Re-architecting Datacenter
Networks and Stacks for Low Latency and High Performance. In Proceedings of the
Conference of the ACM Special Interest Group on Data Communication (SSIGCOMM
’17). ACM, New York, NY, USA, 29-42. https://doi.org/10.1145/3098822.3098825

https://github.com/

Jesper Dangaard Brouer and Toke Hgiland-Jergensen

[7] Toke Heiland-Jergensen, Jesper Dangaard Brouer, Daniel Borkmann, John
Fastabend, Tom Herbert, David Ahern, and David Miller. 2018. The eXpress
Data Path: Fast Programmable Packet Processing in the Operating System Kernel.
In CoNEXT ’18: International Conference on emerging Networking EXperiments
and Technologies.

[8] Magnus Karlsson and Bjérn T6pel. 2018. The Path to DPDK Speeds for AF_XDP.
In Linux Plumbers Conference 2018 Networking Track.

[9] Nikita V. Shirokov. 2018. XDP 1.5 years in production. Evolution and lessons
learned. In Linux Plumbers Conference 2018 Networking Track.

[10] William Tu. 2018. [ovs-dev] AF_XDP support for OVS. https://mail.openvswitch.
org/pipermail/ovs-dev/2018- August/351295.html

[11] William Tu, Fabian Ruffy, and Mihai Budiu. 2018. P4C-XDP: Programming the
Linux Kernel Forwarding Plane using P4. In Linux Plumbers Conference 2018
Networking Track.

[12] William Tu, Joe Stringer, Yifeng Sun, and Yi-Hung Wei. 2018. Bringing The Power
of eBPF to Open vSwitch. In Linux Plumbers Conference 2018 Networking Track.

[13] P.J. Waskiewicz and Neerav Parikh. 2018. XDP acceleration using NIC metadata,
continued. In Linux Plumbers Conference 2018 Networking Track.

[14] Qi Zhang. 2018. [dpdk-dev] PMD driver for AF_XDP. http://mails.dpdk.org/
archives/dev/2018-February/091502.html


https://suricata.readthedocs.io/en/latest/capture-hardware/ebpf-xdp.html
https://suricata.readthedocs.io/en/latest/capture-hardware/ebpf-xdp.html
https://netdevconf.org/2.1/session.html?bertin
https://netdevconf.org/2.1/session.html?bertin
https://github.com/facebookincubator/katran
https://github.com/facebookincubator/katran
https://doi.org/10.1145/3098822.3098825
https://mail.openvswitch.org/pipermail/ovs-dev/2018-August/351295.html
https://mail.openvswitch.org/pipermail/ovs-dev/2018-August/351295.html
http://mails.dpdk.org/archives/dev/2018-February/091502.html
http://mails.dpdk.org/archives/dev/2018-February/091502.html

	Abstract
	1 Introduction
	2 Current developments around XDP
	2.1 The state of XDP performance
	2.2 XDP as a building block
	2.3 Zero-copy to userspace with AF_XDP
	2.4 Evolving XDP using helpers

	3 Future directions for XDP
	3.1 NIC memory models and DMA mapping
	3.2 Moving SKB allocation out of device drivers
	3.3 Decoupling ndo_xdp_xmit resource allocation from XDP loading
	3.4 Partial XDP support in drivers
	3.5 XDP egress hook

	4 Conclusion
	References

