
Jiri Benc
Jesper Dangaard Brouer
Toke Høiland-Jørgensen

Linux Plumbers Conference
Lisbon, Sep 2019

XDP: the Distro View

XDP: the Distro View
1

Outline
In this talk we will give a distro view on XDP, and touch on related general eBPF
topics.

Enabling XDP: kernel config, required packages
Supportability, bug reports handling
Security considerations and hardening
User experience and pain points
Managing user expectations

Then we will look at some of the problems in depth.

XDP: the Distro View - Jiri Benc, Jesper Dangaard Brouer and Toke Høiland-Jørgensen
2

Enabling XDP
Kernel config, required packages, testing.

XDP: the Distro View - Jiri Benc, Jesper Dangaard Brouer and Toke Høiland-Jørgensen
3

Enabling XDP: kernel side
Straigthforward: CONFIG_BPF_SYSCALL=y

XDP is always enabled
Enable AF_XDP: CONFIG_XDP_SOCKETS=y
Consider other networking BPF options:

CONFIG_CGROUP_BPF=y
CONFIG_NET_ACT_BPF=m
CONFIG_NET_CLS_BPF=m
CONFIG_BPF_STREAM_PARSER=y
CONFIG_LWTUNNEL_BPF=y

XDP: the Distro View - Jiri Benc, Jesper Dangaard Brouer and Toke Høiland-Jørgensen
4

Enabling XDP: packages (1/2)
Newest iproute2
bpftool

Part of the kernel source code
But mostly independent
Similar to iproute2: no need for a dependency to a particular kernel version

clang/llvm with bpf backend
BTF support is highly desirable

pahole
Overloaded with BTF conversion code

XDP: the Distro View - Jiri Benc, Jesper Dangaard Brouer and Toke Høiland-Jørgensen
5

Enabling XDP: packages (2/2)
libbpf

Part of the kernel source code
Packageable as a library since kernel v5.1
Not much practical experience, yet

XDP: the Distro View - Jiri Benc, Jesper Dangaard Brouer and Toke Høiland-Jørgensen
6

Enabling XDP: testing
CONFIG_TEST_BPF=m
tools/testing/selftests/bpf

Cumbersome to build and install
samples/bpf

Needs custom installation script
Some samples do not work out of kernel tree
Not really usable for testing overall

XDP: the Distro View - Jiri Benc, Jesper Dangaard Brouer and Toke Høiland-Jørgensen
7

eBPF supportability
Tools, bug reports, audit trail.

XDP: the Distro View - Jiri Benc, Jesper Dangaard Brouer and Toke Høiland-Jørgensen
8

eBPF supportability: tools
Introspection needed. bpftool provides that.

Essential to be installed on all systems.
But provides only the current state, not the history.

sosreport tool
Calls bpftool since v3.5.1.

crash tool
Understands eBPF since v7.2.2.

https://github.com/sosreport/sos

https://github.com/crash-utility/crash

XDP: the Distro View - Jiri Benc, Jesper Dangaard Brouer and Toke Høiland-Jørgensen
9

https://github.com/sosreport/sos
https://github.com/crash-utility/crash

eBPF supportability: bug reports
The kernel behaves differently with BPF programs loaded.
How hard is it to debug a misbehaving system with buggy XDP programs loaded?
Need to teach support engineers to look for BPF programs.

But that’s the usual thing with any new technology.
Distros need to create cheat sheets for users:

What to look for if packets are disappearing (XDP, tc, etc.)
WiP: Drop monitor support for XDP

What to look for if XDP programs are not working as expected.
etc.

XDP: the Distro View - Jiri Benc, Jesper Dangaard Brouer and Toke Høiland-Jørgensen
10

eBPF supportability: audit trail
bpftool provides only the current state. The BPF program that caused issues (e.g.
packet drops) may not be loaded anymore.
Possible solution: enhancing the audit subsystem.

Patches currently stuck due to disagreement between bpf and audit
maintainers.

XDP: the Distro View - Jiri Benc, Jesper Dangaard Brouer and Toke Høiland-Jørgensen
11

eBPF security
Hardening, unprivileged BPF.

XDP: the Distro View - Jiri Benc, Jesper Dangaard Brouer and Toke Høiland-Jørgensen
12

eBPF hardening
Two major areas of possible problems:
1. Spectre class of hardware bugs.

2. Verifier bugs.
Hardening

CONFIG_BPF_JIT_ALWAYS_ON=y to secure against malicious VMs.
Unprivileged users may load BPF programs. Is that a problem?

XDP: the Distro View - Jiri Benc, Jesper Dangaard Brouer and Toke Høiland-Jørgensen
13

Unprivileged BPF (1/2)
Considerations

Verifier bugs may be dangerous.
BPF has been used to ease creation of exploits of hardware bugs.
BPF developers are considering switching off unprivileged BPF as default.

Turning off unprivileged BPF
kernel.unprivileged_bpf_disabled=1
No way to set this by default in upstream kernel.
Needs to be set in a bootloader. Or use a distro specific patch.

XDP: the Distro View - Jiri Benc, Jesper Dangaard Brouer and Toke Høiland-Jørgensen
14

Unprivileged BPF (2/2)
Problems

Daemons manipulating maps need to be privileged.
Even when only reading maps.
Want to limit access to maps owned by other services.

Possible solution: access rights for maps?
Proposed by Andy Lutomirski

XDP: the Distro View - Jiri Benc, Jesper Dangaard Brouer and Toke Høiland-Jørgensen
15

XDP pain points
User, developer, distro problems; expectations and best practices.

XDP: the Distro View - Jiri Benc, Jesper Dangaard Brouer and Toke Høiland-Jørgensen
16

User experience problems
No readily available XDP solution packaged in distros.

“What? Do I need to be a programmer to use XDP?”
tcpdump does not see all packets anymore.

XDP_DROP etc.
There’s no tcpdump-like feature for XDP.

Interface statistics do not count all packets anymore.
“It must be something on the wire!”

XDP programs do not reach the expected speed.
Because generic XDP is used.

XDP: the Distro View - Jiri Benc, Jesper Dangaard Brouer and Toke Høiland-Jørgensen
17

Developer experience problems
Packets can be silently dropped with XDP programs that are accepted as
correct.

Because of using unimplemented features.
What are the available XDP features on the interface?

XDP is not powerful enough.
Can’t send or duplicate packets.
“Where is a repository with XDP libraries I can use?”
“Okay, let’s use AF_XDP…” (later) “performance gotchas!”

Verifier not smart enough.
It has gotten better, but may still reject valid programs

XDP: the Distro View - Jiri Benc, Jesper Dangaard Brouer and Toke Høiland-Jørgensen
18

Distro experience problems (1/3)
User wants to install these two packages. But both are using XDP!

Or user is using XDP for custom filtering. And distro is using XDP, too.
But only one XDP program per interface is supported.

Great part of features untested on non-x86_64.
Lack of community consensus on common libraries, build and devel
environment.

Risk of too much fragmentation, unpolished user experience.
Example: iproute2 has its own bpf support code.

incompatible ELF map format
WIP: conversion to libbpf

Promote libbpf as the preferred solution?

XDP: the Distro View - Jiri Benc, Jesper Dangaard Brouer and Toke Høiland-Jørgensen
19

Distro experience problems (2/3)
libbpf

API in flux, including functions removal.
When built from the kernel, the package has the kernel version.
How much can be relied on ?
Distros need to link to the system version. “Vendoring” makes that hard.

BTF and pahole
perhaps the BTF functionality should be split into a different tool?
kernel build and BTF: gcc should generate BTF

libbpf repo on GitHub

XDP: the Distro View - Jiri Benc, Jesper Dangaard Brouer and Toke Høiland-Jørgensen
20

https://github.com/libbpf/libbpf

Distro experience problems (3/3)
virtio_net supports XDP but the performance is limited.

Can we have XDP passthrough?
Can we have XDP offloading from VM to NIC?
What about VM migration?

XDP: the Distro View - Jiri Benc, Jesper Dangaard Brouer and Toke Høiland-Jørgensen
21

User expectation
XDP has strong marketing. Everyone wants to use it.

There are no ready to use solutions.
Not enough features when trying to implement a custom solution.
Turning to AF_XDP (because it is “XDP”, isn’t it?) and resulting disappointment.

Distros need to focus on developers and encourage them to develop XDP based
solutions.

Need more examples.
Need best practices.
Need education about limitations.

XDP: the Distro View - Jiri Benc, Jesper Dangaard Brouer and Toke Høiland-Jørgensen
22

Examples and best practices
Kernel and : bad starting point
XDP tutorial

Easy build and devel environment.
Easy to try out: uses veth and network name spaces.
How to best package it in a distro?

XDP tools (planned)

Best practices like the tutorial, but easier to re-use
Shippable tools, usable out of the box; please contribute!

E.g., xdpdump, simple packet filter

selftests/bpf samples/bpf

https://github.com/xdp-project/xdp-tutorial

https://github.com/xdp-project/xdp-tools

XDP: the Distro View - Jiri Benc, Jesper Dangaard Brouer and Toke Høiland-Jørgensen
23

https://github.com/torvalds/linux/tree/master/tools/testing/selftests/bpf/prog_tests
https://github.com/torvalds/linux/tree/master/samples/bpf
https://github.com/xdp-project/xdp-tutorial
https://github.com/xdp-project/xdp-tools

Dive in: Multiple XDP programs on a single
interface
Can we agree on a common way to do this?

XDP: the Distro View - Jiri Benc, Jesper Dangaard Brouer and Toke Høiland-Jørgensen
24

Supporting multiple programs on one interface
XDP currently only supports one program per interface.

So how to support multiple functions in sequence?
Driving factors:

Debugging: Enable XDP and still be able to handle the support calls
Composability: User-defined XDP programs combined with packaged ones

E.g.: Run custom filtering, then XDP-enabled Suricata
Today, multiple programs only possible through cooperative tail calls

Implemented differently across projects
Let’s look at a couple of examples of how this is done today…

XDP: the Distro View - Jiri Benc, Jesper Dangaard Brouer and Toke Høiland-Jørgensen
25

Prior art #1: Katran xdp_root
Facebook’s has a mechanism for multi-program loading

Each program cooperatively (tail) calls remaining progs in array

Pros: Supports multiple programs with one map
Cons: Programs need to know their place in the sequence, no per-action hooks

Katran LB

int xdp_root(struct xdp_md *ctx) { // installed on interface
 for (__u32 i = 0; i < ROOT_ARRAY_SIZE; i++) {
 bpf_tail_call(ctx, &root_array, i); // doesn't return when it succeeds
 }
 return XDP_PASS;
}
int xdp_prog_idx0(struct xdp_md *ctx) { // in root_array with idx=0
 for (__u32 i = 1; i < ROOT_ARRAY_SIZE; i++) { // start at 1!
 bpf_tail_call(ctx, &root_array, i); // doesn't return when it succeeds
 }
 return XDP_PASS;
}

XDP: the Distro View - Jiri Benc, Jesper Dangaard Brouer and Toke Høiland-Jørgensen
26

https://github.com/facebookincubator/katran

Prior art #2: Cloudflare xdpdump
Cloudflare posted a that can run after other XDP programs:

Instrument your XDP return with tail-call per XDP ’action’ code

Pros: Different hook program per exit XDP ’action’ code
Cons: Programs must include helper, needs one map per chain call

xdpcap utility

struct bpf_map_def xdpcap_hook = {
 .type = BPF_MAP_TYPE_PROG_ARRAY,
 .key_size = sizeof(int), .value_size = sizeof(int),
 .max_entries = 5 // one entry for each XDP action
};
int xdpcap_exit(struct xdp_md *ctx, void *hook_map, enum xdp_action action) {
 bpf_tail_call(ctx, hook_map, action); // doesn't return if it succeeds
 return action; // reached only if above tail-call failed (no prog installed)
}

int xdp_main(struct xdp_md *ctx) { // program installed on interface
 return xdpcap_exit(ctx, &xdpcap_hook, XDP_PASS);
}

XDP: the Distro View - Jiri Benc, Jesper Dangaard Brouer and Toke Høiland-Jørgensen
27

https://github.com/cloudflare/xdpcap

Limitations of current approaches
There are a couple of limitations we would like to overcome:

Programs need to include tail call code
Needs cooperation from program authors
Incompatibility between approaches
Breaks if omitted by mistake (e.g., accidental return)

Program order cannot be changed without recompilation
Sysadmin cannot enforce policy

E.g., always run diagnostics program (such as xdpdump) first

XDP: the Distro View - Jiri Benc, Jesper Dangaard Brouer and Toke Høiland-Jørgensen
28

Chain calling: design goals
High-level goal: execute multiple eBPF programs in a single XDP hook.
With the following features:
1. Arbitrary execution order

Must be possible to change the order dynamically
Execution chain can depend on program return code

2. Should work without modifying the programs themselves

XDP: the Distro View - Jiri Benc, Jesper Dangaard Brouer and Toke Høiland-Jørgensen
29

Chain calling: Essential ideas
1. Per-interface data structure to define program sequence

Lookup current program ID and return code and get next program
Can be implemented with BPF maps
Similar to prior art #2, but one map for whole call chain

2. Add a hook at program return:
Either by rewriting program return instructions
Or by hooking into bpf_prog_run_xdp() in the kernel

XDP: the Distro View - Jiri Benc, Jesper Dangaard Brouer and Toke Høiland-Jørgensen
30

XDP prog id:1

XDP hook start

On

program

return

XDP prog id:2

XDP prog id:3

Found

next ID?

END

Return last retcode

No

Yes

Program sequence map (eth0)

(prog id:1, ret:PASS) → next id:2

(prog id:1, ret:TX) → next id:3

(prog id:2, ret:PASS) → next id:3

(prog id:3, ret:DROP) → (not found)

...

Tail call

Tail call

Chain-calling: example execution flow

XDP: the Distro View - Jiri Benc, Jesper Dangaard Brouer and Toke Høiland-Jørgensen
31

Chain calling: Call sequence lookup helper
The chain call lookup could be implemented like this:

struct chain_call_lookup {
 unsigned int prog_id;
 unsigned int return_code;
};

int bpf_chain_call(ctx, retcode) {
 void *map = get_chain_call_map(ctx.ifindex);
 if (map) {
 struct chain_call_lookup key = {
 .prog_id = ctx.prog_id,
 .return_code = retcode
 };
 bpf_tail_call(ctx, map, &key); // doesn't return if successful
 }
 return retcode;
}

XDP: the Distro View - Jiri Benc, Jesper Dangaard Brouer and Toke Høiland-Jørgensen
32

Chain calling: Call sequence lookup helper #2
The chain call lookup could also be implemented like this:

int bpf_chain_call(ctx, retcode) {
 void *map = get_chain_call_map(ctx.ifindex);
 if (map) {
 void *inner_map = bpf_map_lookup(map, &ctx.prog_id);
 if (inner_map)
 bpf_tail_call(ctx, inner_map, &retcode); // doesn't return if successful
 }
 return retcode;
}

XDP: the Distro View - Jiri Benc, Jesper Dangaard Brouer and Toke Høiland-Jørgensen
33

Implementation option #1: userspace only
To do this in userspace (e.g., libbpf), the loader must:
1. Define bpf_chain_call() as bpf func

2. Create+pin outer map per ifindex
3. Populate map as XDP programs are loaded (key by prog tag?)
4. Rewrite RETURN instructions to call bpf_chain_call() before loading prog

Pros: No kernel support needed
Cons: Only enforceable if all loaders comply, lots of book-keeping, can’t swap map

XDP: the Distro View - Jiri Benc, Jesper Dangaard Brouer and Toke Høiland-Jørgensen
34

Implementation option #2: Kernel verifier
In the kernel verifier:
1. Define bpf_chain_call() as BPF helper

2. Verifier rewrites return instructions to helper calls
3. Userspace populates per-ifindex call sequence map
Pros: Enforceable systemwide, uses existing tail call infrastructure
Cons: More code in already complex verifier

XDP: the Distro View - Jiri Benc, Jesper Dangaard Brouer and Toke Høiland-Jørgensen
35

Implementation option #3: bpf_prog_run_xdp()
With kernel support in hook:
1. Make bpf_chain_call() a regular function

2. Call it before returning from bpf_prog_run_xdp()
3. Userspace populates per-ifindex call sequence map
Pros: Enforceable systemwide, no new verifier code
Cons: Multiple BPF invocations instead of tail calls, another check in fast path

XDP: the Distro View - Jiri Benc, Jesper Dangaard Brouer and Toke Høiland-Jørgensen
36

Chain-calling: Updating the call sequence
Simple updates: linked-list like operations (map stays the same)

More complex operations: replace the whole thing

We want atomic updates; how to manage read-modify-update races?

Insert after id 3
 --> id = load(prog.o);
 --> map_update(map, {3, PASS}, id) # atomic update
Insert before id 2
 --> id = load(prog.o);
 --> map_update(map, {id, PASS}, 2); # no effect on chain sequence
 --> map_update(map, {1, PASS}, id); # atomic update

Replace ID 3 with new program
 --> id = load(prog.o); map = new_map();
 --> map_update(map, {1, PASS}, 2);
 --> map_update(map, {1, TX}, id);
 --> map_update(map, {2, PASS}, id);
 --> xdp_attach(eth0, 1, map, FORCE); # atomic replace

XDP: the Distro View - Jiri Benc, Jesper Dangaard Brouer and Toke Høiland-Jørgensen
37

Dive in: Missing XDP feature detection
How do we ensure programs will work if loading succeeds?

XDP: the Distro View - Jiri Benc, Jesper Dangaard Brouer and Toke Høiland-Jørgensen
38

Builtin versus drivers
XDP features dependent on driver support, which breaks BPF feature “system”

BPF-core is always compiled-in
BPF verifier will reject BPF prog

if using a feature that isn’t available in BPF core
XDP challenges this concept.

XDP: the Distro View - Jiri Benc, Jesper Dangaard Brouer and Toke Høiland-Jørgensen
39

The XDP available features issue
Today: Users cannot know if a device driver supports XDP or not

This is the question asked most often
And people will often use generic XDP without noticing,

and complain about performance… this is a support issue.
Real users requesting this:

Suricata config want to query for XDP support, else fallback to BPF-TC
VM migration want to query for XDP support, else need to abort migration

Original argument: Drivers MUST support all XDP features
Thus, there is no reason to expose feature bits
This was never true, and e.g. very few drivers support redirect

XDP: the Distro View - Jiri Benc, Jesper Dangaard Brouer and Toke Høiland-Jørgensen
40

What is the real issue?!?
Simply exposing feature XDP to userspace, doesn’t solve the real issue

Real issue: too easy to misconfigure
How to get users to check features before attach? (unlikely to happen)

Real issue: Kernel allows users to attach XDP program
that uses features the driver doesn’t implement
causes silent drops (only way to debug is tracepoints)

Solution: Need something that can reject earlier
at BPF load or XDP attach time
BPF verifier rejects at BPF load time (doesn’t see attach operation)

(if using a feature that isn’t available in BPF core)

XDP: the Distro View - Jiri Benc, Jesper Dangaard Brouer and Toke Høiland-Jørgensen
41

Tech road-block: BPF tail-calls vs attach-time
Solution #1: Do feature match/check at XDP driver attach time

Reject attach, if prog uses unsupported features
Not possible due to BPF tail-call maps

Essentially tail-call maps adds attach “hook” outside driver control
1. Driver XDP prog tail-calls into prog map

2. Tail-prog calls into another (2nd level) prog map
3. Later 2nd level map is updated

with new program using unsupported feature
How can driver reject this 2nd level map insert?!?

XDP: the Distro View - Jiri Benc, Jesper Dangaard Brouer and Toke Høiland-Jørgensen
42

Solution #2: BPF load time with ifindex (1/2)
Solution#2: Do feature match/check at BPF load time

Supply ifindex at BPF load time (like HW-offload already does!)
Issue-2A: what if ifindex bound XDP-prog uses tail-call map

How to check features of programs inserted into tail-call map?
Solution-2A: Bind tail-call map to ifindex

And on tail-call map insert, BPF prog must be ifindex bound too
Require: bound prog, must only use bound tail-map (same ifindex)

Limitations: cannot share tail-call maps (any real users?)
Opt-in interface via supplying ifindex

Have to support loading with no ifindex, due to backwards compatibility

XDP: the Distro View - Jiri Benc, Jesper Dangaard Brouer and Toke Høiland-Jørgensen
43

Solution #2: BPF-load time with ifindex (2/2)
Issue-2B: Generic XDP

At BPF load time, don’t know if used for native or generic XDP
Generic XDP support should be independent of net device

Still, some XDP features are not supported
e.g. cpumap redirect (silent drop)

Possible solutions
Option(1) supply more info than ifindex?

Annoying for API perspective
Option(2) let ifindex imply native XDP?

Force generic-XDP to implement all XDP features (with some fallback)

XDP: the Distro View - Jiri Benc, Jesper Dangaard Brouer and Toke Høiland-Jørgensen
44

Discussion: Expressing XDP features
OK, let’s suppose we agree on how to check for feature support.
But how do we express the features themselves?

XDP: the Distro View - Jiri Benc, Jesper Dangaard Brouer and Toke Høiland-Jørgensen
45

Can verifier detect XDP features?
Either need to supply features (more input than ifindex)

Or verifier needs to be able to detect features
Verifier detection strategy, to deduce XDP features in use

If XDP return code comes from register/map
then assume all XDP return codes in use

Except: can remove XDP_REDIRECT if redirect helper isn’t used
And assume remaining codes are in use

XDP: the Distro View - Jiri Benc, Jesper Dangaard Brouer and Toke Høiland-Jørgensen
46

What kind of XDP features to express?
Obvious feature: XDP return codes in use
Some BPF helpers can depend on driver feature
bpf_xdp_adjust_meta() depend on driver feature

Today fails at runtime (we can do better!)
bpf_xdp_adjust_tail() relevant to know for multi-buffer support

Verifier can easily detect BPF helpers in use

XDP: the Distro View - Jiri Benc, Jesper Dangaard Brouer and Toke Høiland-Jørgensen
47

How to expose XDP features to userspace?
Highly prefer verifier detect features

Pros: Avoids defining UAPI, thus easier to extend
Cons: Userspace cannot easily get XDP feature bits from NIC

Driver needs to express feature bits internally.
How do userspace see what NIC supports? Two options:

(1) Expose driver feature bits (needs some kind of UAPI; ethtool?)
(2) Do feature probing like bpftool

XDP: the Distro View - Jiri Benc, Jesper Dangaard Brouer and Toke Høiland-Jørgensen
48

Questions, comments?
Or did we get through them all on the way?

XDP: the Distro View - Jiri Benc, Jesper Dangaard Brouer and Toke Høiland-Jørgensen
49

