\

—

" XDP: the Distro View

Jiri Benc
Jesper Dangaard Brouer
Toke Hailand-Jergensen

Linux Plumbers Conference
Lisbon, Sep 2019

Q RedHat XDP: the Distro View

Outline

In this talk we will give a distro view on XDP, and touch on related general eBPF
topics.

e Enabling XDP: kernel config, required packages
e Supportability, bug reports handling

e Security considerations and hardening

e User experience and pain points

e Managing user expectations

Then we will in depth.

Red Hat XDP: the Distro View - Jiri Benc, Jesper Dangaard Brouer and Toke Hgiland-Jargensen

Enabling XDP

Kernel config, required packages, testing.

Red Hat XDP: the Distro View - Jiri Benc, Jesper Dangaard Brouer and Toke Hailand-Jargensen

Enabling XDP: kernel side

Straigthforward: CONFIG_BPF_SYSCALL=y

e XDP is always enabled
e Enable AF_XDP: CONFIG_XDP_SOCKETS=y
e Consider other

= CO
= CO
= CO
= CO
= CO

\

L £ £ Z

G_CGROUP_BPF=y
G_NET_ACT_BPF=m
G_NET_CLS_BPF=m
G_BPF_STREAM_PARSER-=y
G_LWTUNNEL_BPF=y

Red Hat

XDP: the Distro View - Jiri Benc, Jesper Dangaard Brouer and Toke Hgiland-Jargensen

Enabling XDP: packages (1/2)

e Newest iproute?
e bpftool
= Part of the kernel source code
= But mostly independent
= Similar to iproute2: no need for a dependency to a particular kernel version
e clang/llvm with bpf backend
m BTF support is highly desirable
e pahole
s Overloaded with BTF conversion code

Red Hat XDP: the Distro View - Jiri Benc, Jesper Dangaard Brouer and Toke Hailand-Jargensen

Enabling XDP: packages (2/2)

e |ibbpf
m Part of the kernel source code
m Packageable as a library since kernel v5.1
= Not much practical experience, yet

Red Hat XDP: the Distro View - Jiri Benc, Jesper Dangaard Brouer and Toke Hailand-Jargensen

Enabling XDP: testing

e CONFIG_TEST_BPF=m
e tools/testing/selftests/bpf
s Cumbersome to build and install
e samples/bpf
m Needs custom installation script
= Some samples do not work out of kernel tree
= Not really usable for testing overall

Red Hat XDP: the Distro View - Jiri Benc, Jesper Dangaard Brouer and Toke Hailand-Jargensen

eBPF supportability

Tools, bug reports, audit trail.

Red Hat XDP: the Distro View - Jiri Benc, Jesper Dangaard Brouer and Toke Hailand-Jargensen

eBPF supportability: tools

Introspection needed. bpftool provides that.

e Essential to be installed on all systems.
e But provides only the current state, not the history.

sosreport tool

e Calls bpftool since v3.5.1.
e https://github.com/sosreport/sos

crash tool

e Understands eBPF since v/.2.2.
e https://github.com/crash-utility/crash

Red Hat XDP: the Distro View - Jiri Benc, Jesper Dangaard Brouer and Toke Hgiland-Jgrgensen

https://github.com/sosreport/sos
https://github.com/crash-utility/crash

eBPF supportability: bug reports

The kernel behaves differently with BPF programs loaded.

How hard is it to debug a misbehaving system with buggy XDP programs loaded?
Need to teach support engineers to look for BPF programs.

e But that's the usual thing with any new technology.

Distros need to create cheat sheets for users:

e What to look for if packets are disappearing (XDP, tc, etc.)
= WiP: Drop monitor support for XDP

e What to look for if XDP programs are not working as expected.
e etc.

Red Hat XDP: the Distro View - Jiri Benc, Jesper Dangaard Brouer and Toke Hailand-Jargensen

10

eBPF supportability: audit trail

opftool provides only . The BPF program that caused issues (e.g.
nacket drops) may not be loaded anymore.

Possible solution: enhancing the audit subsystem.

e Patches currently stuck due to disagreement between bpf and audit
maintainers.

Red Hat XDP: the Distro View - Jiri Benc, Jesper Dangaard Brouer and Toke Hailand-Jargensen

1

eBPF security

Hardening, unprivileged BPF.

Red Hat

XDP: the Distro View

- Jiri Benc, Jesper Dangaard Brouer and Toke Hailand-Jgrgensen

12

eBPF hardening

Two major areas of possible problems:

1. Spectre class of hardware bugs.
2. Verifier bugs.

Hardening
e CONFIG_BPF_JIT_ALWAYS_ON=y to secure against malicious VMs.
o users may load BPF programs. Is that a problem?

Red Hat XDP: the Distro View - Jiri Benc, Jesper Dangaard Brouer and Toke Hgiland-Jgrgensen

13

Unprivileged BPF (1/2)
Considerations

e Verifier bugs may be dangerous.
e BPF has been used to ease creation of exploits of hardware bugs.
e BPF developers are considering switching off unprivileged BPF as default.

Turning off unprivileged BPF

e kernel.unprivileged_bpf_disabled=1
e No way to set this iIn upstream kernel.
e Needs to be set in a bootloader. Or use a distro specific patch.

Red Hat XDP: the Distro View - Jiri Benc, Jesper Dangaard Brouer and Toke Hailand-Jargensen
14

Unprivileged BPF (2/2)

Problems

e Daemons manipulating maps need to be
e Even when only reading maps.

e Want to limit access to maps owned by other services.
Possible solution: access rights for maps?

e Proposed by Andy Lutomirski

Red Hat XDP: the Distro View - Jiri Benc, Jesper Dangaard Brouer and Toke Hailand-Jargensen

15

XDP pain points

User, developer, distro problems; expectations and best practices.

Red Hat XDP: the Distro View - Jiri Benc, Jesper Dangaard Brouer and Toke Hailand-Jargensen

16

User experience problems

e No readily available XDP solution packaged in distros.

e tcpdump does not see all packets anymore.
s XDP DROP etc.
= There's for XDP.
e Interface statistics do not count all packets anymore.

e XDP programs do not reach the expected speed.
m Because Is used.

Red Hat XDP: the Distro View - Jiri Benc, Jesper Dangaard Brouer and Toke Hgiland-Jgrgensen

17

Developer experience problems

e Packets can be silently dropped with XDP programs that are accepted as
correct.

= Because of using .

m \What are the available XDP features on the interface?
e XDP is not powerful enough.

= Can't send or duplicate packets.

N

m (later)
e \erifier not smart enough.

® |t has gotten better, but may still reject valid programs

Red Hat XDP: the Distro View - Jiri Benc, Jesper Dangaard Brouer and Toke Hailand-Jargensen

18

Distro experience problems (1/3)

e User wants to install these two packages. But both are using XDP!
m Or user is using XDP for custom filtering. And distro is using XDP, too.

= But per interface is supported.
e Great part of features

e | ack of community consensus on common libraries, build and devel
environment.
m Risk of too much fragmentation, unpolished user experience.
m Example: iproute2 has its own bpf support code.
o incompatible ELF map format
o WIP: conversion to libbpf

= Promote libbpf as the preferred solution?

Red Hat XDP: the Distro View -

Jiri Benc, Jesper Dangaard Brouer and Toke Hailand-Jgrgensen

19

Distro experience problems (2/3)

e |ibbpf

= APl in flux, including functions removal.

= When built from the kernel, the package has the kernel version.

= How much can be relied on libbpf repo on GitHub?

m Distros need to link to the system version. “Vendoring” makes that hard.
e BTF and pahole

m perhaps the BTF functionality should be split into a 7

m kernel build and BTF: gcc should generate BTF

Red Hat XDP: the Distro View - Jiri Benc, Jesper Dangaard Brouer and Toke Hailand-Jargensen

20

https://github.com/libbpf/libbpf

Distro experience problems (3/3)

e virtio_net supports XDP but the performance is limited.
= Can we have XDP passthrough?
= Can we have XDP offloading from VM to NIC?
= What about VM migration?

Red Hat XDP: the Distro View - Jiri Benc, Jesper Dangaard Brouer and Toke Hailand-Jargensen

21

User expectation

XDP has strong marketing. Everyone wants to use it.

e There are no ready to use solutions.
e Not enough features when trying to implement a custom solution.
e Turning to AF_XDP (because itis) and resulting disappointment.

Distros need to focus on developers and encourage them to develop XDP based

solutions.

e Need more examples.

e Need best practices.
e Need education about limitations.

Red Hat XDP: the Distro View - Jiri Benc, Jesper Dangaard Brouer and Toke Hailand-Jargensen
22

Examples and best practices

Kernel selftests/bpf and samples/bpf:
XDP tutorial

e https://github.com/xdp-project/xdp-tutorial

e Easy build and devel environment.

e Easy to try out: uses veth and network name spaces.
e How to best package it in a distro?

XDP tools (planned)

e https://github.com/xdp-project/xdp-tools

e Best practices like the tutorial, but easier to re-use

e Shippable tools, usable out of the box; please contribute!
m E.g., xdpdump, simple packet filter

Red Hat XDP: the Distro View - Jiri Benc, Jesper Dangaard Brouer and Toke Hgiland-Jargensen

23

https://github.com/torvalds/linux/tree/master/tools/testing/selftests/bpf/prog_tests
https://github.com/torvalds/linux/tree/master/samples/bpf
https://github.com/xdp-project/xdp-tutorial
https://github.com/xdp-project/xdp-tools

Dive in: Multiple XDP programs on a single
interface

Can we agree on a common way to do this?

Red Hat XDP: the Distro View - Jiri Benc, Jesper Dangaard Brouer and Toke Hailand-Jargensen

24

Supporting multiple programs on one interface
XDP currently only supports

e So how to support multiple functions in sequence?
e Driving factors:
= Debugging: Enable XDP and still be able to handle the support calls
m Composability: User-defined XDP programs combined with packaged ones
o E.g.: Run custom filtering, then XDP-enabled Suricata
e Today, multiple programs only possible through cooperative tail calls
= Implemented differently across projects

Let's look at a couple of examples of how this is done today...

Red Hat XDP: the Distro View - Jiri Benc, Jesper Dangaard Brouer and Toke Hgiland-Jgrgensen

25

Prior art #1. Katran xdp_root

Facebook's Katran LB has a mechanism for multi-program loading

e Each program cooperatively (tail) calls remaining progs in array

int xdp_root(struct xdp_md *ctx) {
for (_u32 i = @; i < ROOT_ARRAY_SIZE; i++) {
bpf_tail call(ctx, &root_array, 1);

}
return XDP_PASS;

¥
int xdp_prog_idx0(struct xdp_md *ctx) {
for (_u32 i = 1; i < ROOT_ARRAY_SIZE; i++) {
bpf_tail call(ctx, &root_array, 1);

k
return XDP_PASS,;

3

Pros: Supports multiple programs with one map

: Programs need to know their place in the sequence, no per-action hooks

Red Hat XDP: the Distro View - Jiri Benc, Jesper Dangaard Brouer and Toke Hailand-Jargensen

26

https://github.com/facebookincubator/katran

Prior art #2: Cloudflare xdpdump

Cloudflare posted a xdpcap utility that can run after other XDP programs:

e Instrument your XDP return with tail-call per XDP ‘action’ code

struct bpf_map_def xdpcap_hook = {
.type = BPF_MAP_TYPE_PROG_ARRAY,
.key_size = sizeof(int), .value_size = sizeof(int),
.max_entries = 5
i
int xdpcap_exit(struct xdp_md *ctx, void *hook_map, enum xdp_action action) {
bpf_tail call(ctx, hook_map, action);
return action;

}

int xdp_main(struct xdp_md *ctx) {
return xdpcap_exit(ctx, &xdpcap_hook, XDP_PASS);
b

Pros: Different hook program per exit XDP ‘action’ code

: Programs must include helper, needs one map per chain call

Red Hat XDP: the Distro View - Jiri Benc, Jesper Dangaard Brouer and Toke Hailand-Jargensen

27

https://github.com/cloudflare/xdpcap

Limitations of current approaches

There are a couple of limitations we would like to overcome:

e Programs need to include tail call code

m Needs cooperation from program authors

® |[ncompatibility between approaches

m Breaks if omitted by mistake (e.g., accidental return)
e Program order cannot be changed without recompilation
e Sysadmin cannot

m E.g., always run diagnostics program (such as xdpdump) first

Red Hat XDP: the Distro View - Jiri Benc, Jesper Dangaard Brouer and Toke Hailand-Jargensen

28

Chain calling: design goals
High-level goal: execute multiple eBPF programs in a single XDP hook.

With the following features:

1. Arbitrary execution order
e Must be possible to change the order dynamically
e Execution chain can depend on program return code
2. Should work without modifying the programs themselves

Red Hat XDP: the Distro View - Jiri Benc, Jesper Dangaard Brouer and Toke Hailand-Jargensen

29

Chain calling: Essential ideas

1. Per-interface data structure to define program sequence

e | ookup current program ID and return code and get next program
e Can be implemented with BPF maps

e Similar to prior art #2, but one map for whole call chain
2. Add a hook at program return:

e Either by rewriting program return instructions
e Or by hookinginto bpf_prog_run_xdp() in the kernel

Red Hat XDP: the Distro View - Jiri Benc, Jesper Dangaard Brouer and Toke Hailand-Jargensen

30

Chain-calling: example execution flow

XDP hook start

v

XDP prog id:1

L Program sequence map (ethO)
On

program (prog id:1, ret:PASS) — next id:2 Found END
return > gprog id:1, ret:TX) - next id:3 next ID? Return last retcode
(

prog id:2, ret:PASS) - next id:3
prog id:3, ret:DROP) —= (not found)

\/\

Tail call

7

XDP prog id:2

Tail call

\ 2
XDP prog id:3

Red Hat XDP: the Distro View - Jiri Benc, Jesper Dangaard Brouer and Toke Hgiland-Jergensen

Chain calling: Call sequence lookup helper

The chain call lookup could be implemented like this:

struct chain_call_lookup {
unsigned int ;
unsigned int ;

I

int (ctx, retcode) {
void * = get_chain_call_map(ctx.ifindex);
if (map) {
struct chain_call_lookup = {
.prog_id = ctx.prog_id,
.return_code = retcode
3
bpf_tail call(ctx, map, &key);
}

return retcode;

}

Red Hat XDP: the Distro View - Jiri Benc, Jesper Dangaard Brouer and Toke Hailand-Jargensen
32

Chain calling: Call sequence lookup helper #2

The chain call lookup could also be implemented like this:

int (ctx, retcode) {
void * = get_chain_call_map(ctx.ifindex);
if (map) {
void * = bpf_map_lookup(map, &ctx.prog_id);

it (inner_map)
bpf_tail_call(ctx, inner_map, &retcode);

}
return retcode;
ks
Red Hat XDP: the Distro View - Jiri Benc, Jesper Dangaard Brouer and Toke Hailand-Jargensen

33

Implementation option #1: userspace only

To do this in userspace (e.qg., libbpf), the loader must:

1. Define bpf_chain_call() as bpf func

2. Create+pin outer map per ifindex
3. Populate map as XDP programs are loaded (key by prog tag?)
4. Rewrite RETURN instructions to call bpf_chain_call() before loading prog

Pros: No kernel support needed
: Only enforceable if all loaders comply, lots of book-keeping, can't swap map

Red Hat XDP: the Distro View - Jiri Benc, Jesper Dangaard Brouer and Toke Hailand-Jargensen

34

Implementation option #2: Kernel verifier

In the kernel verifier:

1. Define bpf_chain_call() as BPF helper
2. Verifier rewrites return instructions to helper calls
3. Userspace populates per-ifindex call sequence map

Pros: Enforceable systemwide, uses existing tail call infrastructure

: More code in already complex verifier

Red Hat XDP: the Distro View - Jiri Benc, Jesper Dangaard Brouer and Toke Hailand-Jargensen

35

Implementation option #3: bpf_prog_run_xdp()

With kernel support in hook:

1. Make bpf_chain_call() aregular function
2. Call it before returning from bpf_prog_run_xdp ()
3. Userspace populates per-ifindex call sequence map
Pros: Enforceable systemwide, no new verifier code
: Multiple BPF invocations instead of tail calls, another check in fast path

Red Hat XDP: the Distro View - Jiri Benc, Jesper Dangaard Brouer and Toke Hailand-Jargensen

36

Chain-calling: Updating the call sequence
e Simple updates: linked-list like operations (map stays the same)

--> 1id = load(prog.o);
--> map_update(map, {3, PASS}, id)

1
V

id = load(prog.o);
- map_update(map, {id, PASS}, 2),;
--> map_update(map, {1, PASS}, id);

1
\Y

e More complex operations:

id = load(prog.o); map = new_map();
map_update(map, {1, PASS}, 2);
map_update(map, {1, TX}, id);
map_update(map, {2, PASS}, id);
xdp_attach(eth®, 1, map, FORCE);

[Y I
V V V V V

We want atomic updates; how to manage read-modify-update races?

Red Hat XDP: the Distro View - Jiri Benc, Jesper Dangaard Brouer and Toke Hailand-Jargensen

37

Dive in: Missing XDP feature detection

How do we ensure programs will work if loading succeeds?

Red Hat XDP: the Distro View - Jiri Benc, Jesper Dangaard Brouer and Toke Hailand-Jargensen

38

Builtin versus drivers

XDP features dependent on driver support, which breaks BPF feature “system”

e BPF-core is always compiled-in
e BPF verifier will reject BPF prog
= f using a feature that isn't available in BPF core

XDP challenges this concept.

Red Hat XDP: the Distro View - Jiri Benc, Jesper Dangaard Brouer and Toke Hgiland-Jgrgensen

39

The XDP available features issue

Today: Users cannot know if a device driver supports XDP or not

e Thisis the question asked most often
e And people will often ,
= and complain about performance... this is a support issue.

Real users requesting this:

e Suricata config want to query for XDP support, else fallback to BPF-TC
e VM migration want to query for XDP support, else need to abort migration

Original argument: Drivers MUST support all XDP features

e Thus, there is no reason to expose feature bits
e This was never true, and e.g. very few drivers support redirect

Red Hat XDP: the Distro View - Jiri Benc, Jesper Dangaard Brouer and Toke Hailand-Jargensen

40

What is the real issue?!?

Simply exposing feature XDP to userspace, doesn't solve the real issue

e Realissue: too easy to misconfigure
e How to get users to check features before attach? (unlikely to happen)

Real issue: Kernel allows users to attach XDP program

e that uses features the driver doesn’t implement
® causes (only way to debug is tracepoints)

Solution: Need something that can reject earlier

e at BPF load or XDP attach time
e BPF verifier rejects at BPF load time (doesn't see attach operation)
= (if using a feature that isn't available in BPF core)

Red Hat XDP: the Distro View - Jiri Benc, Jesper Dangaard Brouer and Toke Hailand-Jargensen

41

Tech road-block: BPF tail-calls vs attach-time
Solution #1: Do feature match/check at XDP driver attach time

e Reject attach, if prog uses unsupported features

Essentially tail-call maps adds attach "hook” outside driver control

1. Driver XDP prog tail-calls into prog map
2. Tail-prog calls into another (2nd level) prog map

3. Later 2nd level map is updated
e with new program using unsupported feature

How can driver reject this 2nd level map insert?!?

Red Hat XDP: the Distro View - Jiri Benc, Jesper Dangaard Brouer and Toke Hailand-Jargensen

42

Solution #2: BPF load time with ifindex (1/2)

Solution#2: Do feature match/check at BPF load time
e Supply ifindex at BPF load time (like HW-offload already does!)
: what if ifindex bound XDP-prog uses

e How to check features of programs inserted into tail-call map?

e Solution-2A: Bind tail-call map to ifindex
®m And on tail-call map insert, BPF prog must be ifindex bound too

= Require: bound prog, must only use bound tail-map (same ifindex)
e Limitations: cannot share tail-call maps (any real users?)
e Opt-in interface via supplying ifindex
m Have to support loading with no ifindex, due to backwards compatibility

Red Hat XDP: the Distro View - Jiri Benc, Jesper Dangaard Brouer and Toke Hailand-Jargensen

Solution #2: BPF-load time with ifindex (2/2)

: Generic XDP
e At BPF load time, don't know if used for native or generic XDP
Generic XDP support should be independent of net device

e Still, some XDP features are not supported
m e.g.cpumap redirect (silent drop)

Possible solutions

e Option(1) supply more info than ifindex?
= Annoying for API perspective
e Option(2) let ifindex imply native XDP?
= Force generic-XDP to implement all XDP features (with some fallback)

Red Hat XDP: the Distro View - Jiri Benc, Jesper Dangaard Brouer and Toke Hailand-Jargensen

44

Discussion: Expressing XDP features

OK, let's suppose we agree on how to check for feature support.

But how do we express the features themselves?

Red Hat XDP: the Distro View - Jiri Benc, Jesper Dangaard Brouer and Toke Hailand-Jargensen

45

Can verifier detect XDP features?

Either need to supply features (more input than 1findex)
e Or verifier needs to be able to detect features

Verifier detection strategy, to deduce XDP features in use
e |[f XDP return code comes from register/map
m then assume all XDP return codes in use

e Except: can remove XDP_REDIRECT if redirect helper isn't used
m And assume remaining codes are in use

Red Hat XDP: the Distro View - Jiri Benc, Jesper Dangaard Brouer and Toke Hgiland-Jgrgensen
46

What kind of XDP features to express?

Obvious feature: XDP return codes in use
Some BPF helpers can depend on driver feature

e bpf_xdp_adjust_meta() depend on driver feature

m Today fails at runtime (we can do better!)
e bpf_xdp_adjust_tail() relevant to know for multi-buffer support

Veritier can easily detect BPF helpers in use

Red Hat XDP: the Distro View - Jiri Benc, Jesper Dangaard Brouer and Toke Hailand-Jargensen

47

How to expose XDP features to userspace?

Highly prefer verifier detect features

e Pros: Avoids defining UAPI, thus easier to extend
. : Userspace cannot easily get XDP feature bits from NIC

Driver needs to express feature bits internally.
How do userspace see what NIC supports? Two options:

e (1) Expose driver feature bits (needs some kind of UAPI; ethtool?)
e (2) Do feature probing like bpftool

Red Hat XDP: the Distro View - Jiri Benc, Jesper Dangaard Brouer and Toke Hailand-Jargensen

48

Questions, comments?
Or did we get through them all on the way?

Red Hat

XDP: the Distro View

- Jiri Benc, Jesper Dangaard Brouer and Toke Hailand-Jgrgensen

49

