
Network Performance Workshop, NetDev 1.21

Memory vs. Networking
Provoking and fixing memory bottlenecks

Jesper Dangaard Brouer
Principal Engineer, Red Hat

Date: October 2016
Venue: NetConf, Tokyo, Japan



Network Performance Workshop, NetDev 1.22

Memory vs. Networking

● Network provoke bottlenecks in memory allocators
● Lots of work needed in MM-area

● Both in
● kmem_cache (SLAB/SLUB) allocator

● (bulk API almost done, more users please!)

● Page allocator
● Baseline performance too slow (see later graphs)
● Drivers: page recycle caches have limits

● Does not address all areas of problem space



Network Performance Workshop, NetDev 1.23

MM: Status on kmem_cache bulk

● Discovered IP-forwarding: hitting slowpath
● in kmem_cache/SLUB allocator

● Solution: Bulk APIs for kmem_cache (SLAB+SLUB) 
● Status: upstream since kernel 4.6
● Netstack use bulk free of SKBs in NAPI-context

● Use bulking opportunity at DMA-TX completion
● 4-5% performance improvement for IP forwarding

● Generic kfree_bulk API
● Rejected: Netstack bulk alloc of SKBs

● As number of RX packets were unknown



Network Performance Workshop, NetDev 1.24

MM: kmem_cache bulk, more use-cases

● Network stack – more use-cases
● Need explicit bulk free use from TCP stack

● NAPI bulk free, not active for TCP (keep ref too long)

● Use kfree_bulk() for skb→head
● (when allocated with kmalloc)

● Use bulk free API for qdisc delayed free

● RCU use-case
● Use kfree_bulk() API for delayed RCU free

● Other kernel subsystems?



Network Performance Workshop, NetDev 1.25

SKB overhead sources

● Sources of overhead for SKBs (struct sk_buff)

● Memory alloc+free
● Addressed by kmem_cache bulk API

● Clearing SKB
● Need to clear 4 cache-lines!

● Read-only RX pages
● Cause more expensive construction the SKB



Network Performance Workshop, NetDev 1.26

SKB allocations: with read-only pages

● Most drivers have read-only RX pages
● Cause more expensive SKB setup

1) Alloc separate writable mem area

2) memcpy over RX packet headers

3) Store skb_shared_info in writable-area

4) Setup pointers and offsets, into RX page-"frag"

● Reason: Performance trade off

A)Page allocator is too slow

B)DMA-API expensive on some platforms (with IOMMU)
● Hack: alloc and DMA map larger pages, and “chop-up” page
● Side-effect: read-only RX page-frames

● Due to unpredictable DMA unmap time



Network Performance Workshop, NetDev 1.27

Benchmark: Page allocator (optimal case, 1 CPU, no congestion)

Order=0 (4K) Order=1 (8K) Order=2 (16K) Order=3 (32K) Order=4 (64K) Order=5 (128K)
0

100

200

300

400

500

600

700

800

900

1000

CPU cycles per page

cycles per 4K

10Gbit/s budget

Mel Gorman patchset

● Single page (order-0) too slow for 10Gbit/s budget

● Cycles cost increase with page order size

● But partitioning page into 4K fragments amortize cost

https://github.com/netoptimizer/prototype-kernel/blob/master/kernel/mm/bench/page_bench01.c


Network Performance Workshop, NetDev 1.28

Issues with: Higher order pages

● Performance workaround:
● Alloc larger order page, handout fragments

● Amortize alloc cost over several packets

● Troublesome
● 1. fast sometimes and other times require 

reclaim/compaction which can stall for prolonged 
periods of time.

● 2. clever attacker can pin-down memory
● Especially relevant for end-host TCP/IP use-case

● 3. does not scale as well, concurrent workloads



Network Performance Workshop, NetDev 1.29

Concurrent CPUs scaling micro-benchmark

CPUs=1 2 3 4 5 6 7 8
0

200

400

600

800

1000

1200

1400

Order=3, Cycles per 4K

Order=0, Cycles (4K)

max forward budget

Order=0, Mel Gorman

● Danger of higher order pages, with parallel workloads

● Order=0 pages scale well

● Order=3 pages scale badly, even counting per 4K

● Already lose advantage with 2 concurrent CPUs

https://github.com/netoptimizer/prototype-kernel/blob/master/kernel/mm/bench/page_bench03.c


Network Performance Workshop, NetDev 1.210

RX-path: Make RX pages writable

● Need to make RX pages writable

● Why is page (considered) read-only?
● Due to DMA_unmap time

● Several page fragments (packets) in-flight
● Last fragment in RX ring queue, call dma_unmap()
● DMA engine unmap semantics allow overwriting memory

● (Not a problem on Intel)

● Simple solution: Use one-packet per page
● And call dma_unmap before using page

● My solution is the page_pool



Network Performance Workshop, NetDev 1.211

Page pool: Generic solution, many advantages

● 5 features of a recycling page pool (per device):

1)Faster than page-allocator speed
● As a specialized allocator require less checks

2)DMA IOMMU mapping cost removed
● Keeping page mapped (credit to Alexei)

3)Make page writable
● By predictable DMA unmap point

4)OOM protection at device level
● Feedback-loop know #outstanding pages

5)Zero-copy RX, solving memory early demux
• Depend on HW filters into RX queues



Network Performance Workshop, NetDev 1.212

Page pool: Design

● Idea presented at MM-summit April 2016

● Basic concept for the page_pool
● Pages are recycled back into originating pool

● Creates a feedback loop, helps limit pages in pool

● Drivers still need to handle dma_sync part
● Page-pool handle dma_map/unmap

● essentially: constructor and destructor calls

● Page free/return to page-pool, Either:

1) SKB free knows and call page pool free, or

2) put_page() handle via page flag

http://people.netfilter.org/hawk/presentations/MM-summit2016/generic_page_pool_mm_summit2016.pdf


Network Performance Workshop, NetDev 1.213

Page-pool: opportunity – feedback loop

● Today: Unbounded RX page allocations by drivers
● Can cause OOM (Out-of-Memory) situations
● Handled via skb->truesize and queue limits

● Page pool provides a feedback loop
● (Given pages are recycles back to originating pool)

● Allow bounding pages/memory allowed per RXq
● Simple solution: configure fixed memory limit
● Advanced solution, track steady-state

● Can function as a “Circuit Breaker” (See RFC draft link)

https://tools.ietf.org/html/draft-ietf-tsvwg-circuit-breaker-15


Network Performance Workshop, NetDev 1.214

SKB clearing cost is high

● Options for addressing clearing cost:
● Smaller/diet SKB (currently 4 cache-lines)

● Too hard!

● Faster clearing
● Hand optimized clearing: only save 10 cycles
● Clear larger contiguous mem (during bulk alloc API)

● Delay clearing
● Don't clear on alloc (inside driver)

● Issue: knowing what fields driver updated
● Clear sections later, inside netstack RX
● Allow prefetchw to have effect



Network Performance Workshop, NetDev 1.215

Topic: RX-MM-allocator – Alternative

● Prerequisite: When page is writable

● Idea: No SKB alloc calls during RX!
● Don't alloc SKB,

● Create it inside head or tail-room in data-page

● skb_shared_info, placed end-of data-page
● Issues / pitfalls:

1) Clear SKB section likely expensive

2) SKB truesize increase(?)

3) Need full page per packet (ixgbe does page recycle trick)



Network Performance Workshop, NetDev 1.216

The end

● kfree_bulk(16, slides);


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16

