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Presentation is primarily XDP progress, missing features and issues

● As a ground for discussion
● Discussing bold new ideas

○ … that might NEVER be implemented

This presentation is mostly relevant to: 

● Infrastructure developers of XDP

Background for these slides
Presented at “closed” invite-only conference NetConf

http://vger.kernel.org/netconf2017part2.html
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Basically: New layer in the kernel network stack

● Before allocating the SKB
● Means: Competing at the same “layer” as DPDK / netmap

Together with other eBPF hooks (like TC), opens for

● User programmable networking
○ Powerful flexibility offered to userspace

What is XDP really
New layer in the kernel network stack
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Driver: ixgbe+i40e

● killed: 1-page per packet restriction
● Tie us into refcnt based page model
● Be careful this doesn’t kill new memory model for networking

New XDP_REDIRECT action

● Limited driver support :-(
● Innovative part: Redirect using maps - helper: bpf_redirect_map()
● Indirectly got RX bulking, via redirect maps

Progress
Follow Up since NetConf in Montreal April 2017
See previous presentation: Here

http://vger.kernel.org/netconf2017.html
http://people.netfilter.org/hawk/presentations/NetConf2017/xdp_work_ahead_NetConf_April_2017.pdf
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Currently avoiding memory layer

● XDP_{DROP,TX} avoid calling memory layer
○ Driver contained, free to perform local page recycle tricks

XDP_REDIRECT cannot avoid memory layer

● Remote driver need to free/return page at DMA TX completion
● Currently based on page_frag_free()/put_page() refcnt

○ Recycling only works for ixgbe 2-pkts per page trick
○ Easily demonstrate ixgbe recycle size it too small

● Danger: Destroy opportunity for new memory model for RX-rings
○ Need fixed/known page-return point, not racing on refcnt

● Edward Cree: Suggested driver NDO for returning (XDP) pages

Remaining issues
The headaches not cured yet
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XDP redirect with maps

● Is the port-table idea from Montreal

XDP_REDIRECT via direct ifindex did happen

● Concerns addressed via
○ Egress ifindex also need to have loaded an XDP program
○ Monitor activity via tracepoints

● Using ifindex is significantly slower than using redirect maps
○ Non-map ifindex 8 Mpps -> devmap 13 Mpps
○ Devmap faster due bulking via delayed tailptr write

XDP_REDIRECT what got implemented?
Related to ifindex vs port-table discussions in Montreal

http://people.netfilter.org/hawk/presentations/NetConf2017/xdp_work_ahead_NetConf_April_2017.pdf
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The  last XDP driver action return code (hopefully?)

● New types of redirect can be introduced without driver changes

Can be used for dynamic adaptive RX bulking

● Method of adding bulking without introducing additional latency
● Bulk only frames available in driver NAPI poll loop
● Via (driver) flush operation after napi_poll

Could be used for priority queuing

● Between frames available during NAPI poll

XDP_REDIRECT via maps
Why is XDP_REDIRECT via maps innovative?
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Map types for redirect:

● devmap - BPF_MAP_TYPE_DEVMAP
○ Redirect to net_devices, require new driver NDO
○ Bulk effect via delaying HW tail/doorbell (like xmit_more)

● cpumap - BPF_MAP_TYPE_CPUMAP
○ Redirect raw XDP frames to remote CPUs, that alloc SKBs
○ Much more on next slide...

New map types for redirect
What is currently implemented?



Next slides
XDP_REDIRECT issues

Common mistakes and issues with XDP_REDIRECT
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XDP prog return XDP_REDIRECT

● BUT have no knowledge if packet is dropped
● Sample xdp_redirect{_map} report RX-packets

○ People misguide think this equal forward TX pkts
○ Default setting will RX=13Mpps TX=6.3Mpps

■ Partly fixed via ixgbe adaptive TX DMA cleanup interval

Knowledge of drops via tracepoints

● Drop also occur due to misconfig
● (Currently) different ERRNO return code used to distinguish
● Tracepoint cost ~25ns, which affect XDP performance (split into _err)

XDP_REDIRECT pitfalls
Common mistakes and issues with XDP_REDIRECT
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Issue: ndo_xdp_xmit queue single xdp_buff frame

● Driver must provide/alloc dedicated XDP TX queues per CPU
○ AFAIK holding back driver adoption

● Simple solution: Bulk enqueue (like cpumap)
○ Relevant xmit to VMs (queue almost empty case, cache-bounce)

Issue: no page return method or handle

● De Facto enforced refcnt based model for page return
● Info/ref to RX-device is lost,  thus no later return API possible

XDP_REDIRECT API issues 
API issues with
  int ndo_xdp_xmit(struct net_device *dev, struct xdp_buff *xdp)



Next slides
Describe CPUMAP current state

How the merged code works!
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Basic cpumap properties

● Enables redirection XDP frames to remote CPUs
● Moved SKB allocation outside driver (could help simplify drivers)

Scalability and isolation mechanism

● Allows isolating/decouple driver XDP layer from network stack
○ Don't delay XDP by deep call into network stack

● Enables DDoS protection on end-hosts (that run services)
○ XDP fast-enough to avoid packet drops happen in HW NICs

XDP_REDIRECT + cpumap
What is cpumap redirect?
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Cpumap architecture:  Every slot in array-map: dest-CPU

● MPSC (Multi Producer Single Consumer) model: per dest-CPU
○ Multiple RX-queue CPUs can enqueue to single dest-CPU

● Fast per CPU enqueue store (for now) 8 packets
○ Amortized enqueue cost to shared ptr_ring queue via bulk-enq

● Lockless dequeue, via pinning kthread CPU and disallow ptr_ring resize

Important properties from main shared queue  ptr_ring (cyclic array based)

● Enqueue+dequeue don't share cache-line for synchronization
○ Synchronization happen based on elements
○ In queue almost full case, avoid cache-line bouncing
○ In queue almost empty case, reduce cache-line bouncing via bulk-enq

Cpumap redirect CPU scaling
Tricky part getting cross CPU delivery fast-enough
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XDP_REDIRECT 
enqueue into 

cpumap

Kthread dequeue

Start normal 
netstack

App can run on 
another CPU via 

socket queue

CPU scheduling via cpumap 
Queuing and scheduling in cpumap

CPU#2
kthread

CPU#1
NAPI RX

CPU#3
Userspace

sched

Hint: Same CPU sched possible
● But adjust /proc/sys/kernel/sched_wakeup_granularity_ns



Next slides
Benchmark results for cpumap

Related to page refcnt and recycle tricks
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The program sample/bpf: xdp_redirect_cpu

● Have several XDP progs to choose between via --prog
○ Prog_num 0: Redir 1 CPU  - no-touch data
○ Prog_num 1: Redir 1 CPU  - touch data
○ Prog_num 2: Round-Robin between avail CPUs
○ Prog_num 3: Separate in proto UDP/TCP/ICMP , need 3 CPUs
○ Prog_num 4: Like prog3, but drop UDP dest port 9 in XDP-RX CPU

● CPUs are added via --cpu (specify multiple times, depend on prog usage)

Sample/bpf xdp_redirect_cpu
Program used for benchmarking XDP cpumap, while developing
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Simply redirect from CPU-1 to CPU-2
Generator ./pktgen_sample03_burst_single_flow.sh -t 1

● Sending single UDP flow with 7.1Mpps
● Packets dropped due to "UdpNoPorts" listener

# ./xdp_redirect_cpu --dev ixgbe1 --prog 1 --cpu 2

Running XDP/eBPF prog_num:1
XDP-cpumap      CPU:to  pps            drop-pps    extra-info
XDP-RX          1       7,139,086      0           0          
XDP-RX          total   7,139,086      0          
cpumap-enqueue    1:2   7,138,979      3,123,418   8.00       bulk-average
cpumap-enqueue  sum:2   7,138,979      3,123,418   8.00       bulk-average
cpumap_kthread  2       4,015,615      0           101        sched
cpumap_kthread  total   4,015,615      0           101        sched-sum
redirect_err    total   0              0          
xdp_exception   total   0              0          

Impressive 4Mpps getting forwarded to remote CPU
● SKB alloc, netstack, kfree_skb
● Refcnt cost on CPU-2:  9.01% page_frag_free()
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Increase load - same test
Same test: Simple redirect from CPU-1 to CPU-2

● Generator sending 14.88Mpps

Running XDP/eBPF prog_num:1
XDP-cpumap      CPU:to  pps            drop-pps    extra-info
XDP-RX          1       10,312,899     0           0          
XDP-RX          total   10,312,899     0          
cpumap-enqueue    1:2   10,312,890     7,283,321   8.00       bulk-average
cpumap-enqueue  sum:2   10,312,890     7,283,321   8.00       bulk-average
cpumap_kthread  2       3,029,580      0           9          sched
cpumap_kthread  total   3,029,580      0           9          sched-sum
redirect_err    total   0              0          
xdp_exception   total   0              0          

What happened? - ixgbe page recycle trick fails!
● CPU redirect drop from 4Mpps to 3Mpps
● XDP input limited to 10.3Mpps

Ethtool stats counter:  2,229,493 <= alloc_rx_page /sec (x2 for PPS)
● Perf show free_one_page() stall on page-alloc spinlock
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Same test - increase page-recycles size
Need more pages to recycle

● Ixgbe recycle tied to RX-ring size, increase from 512 to 1024
● ethtool -G ixgbe1 rx 1024 tx 1024

Running XDP/eBPF prog_num:1
XDP-cpumap      CPU:to  pps            drop-pps    extra-info
XDP-RX          1       13,510,564     0           0          
XDP-RX          total   13,510,564     0          
cpumap-enqueue    1:2   13,510,564     9,490,196   8.00       bulk-average
cpumap-enqueue  sum:2   13,510,564     9,490,196   8.00       bulk-average
cpumap_kthread  2       4,020,367      0           8          sched
cpumap_kthread  total   4,020,367      0           8          sched-sum

Solved problem: again 4 Mpps redirect to CPU-2
● 13.5Mpps limit might be related to HW limit in NIC (MPC HW counter)
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Start userspace UDP consumer
Generator pktgen 14.88 Mpps

● UDP sink pinned on CPU 4
● Result: Userspace delivery 2,545,429 pps

Running XDP/eBPF prog_num:1
XDP-cpumap      CPU:to  pps            drop-pps    extra-info
XDP-RX          1       10,269,035     0           0          
XDP-RX          total   10,269,035     0          
cpumap-enqueue    1:2   10,269,023     6,302,826   8.00       bulk-average
cpumap-enqueue  sum:2   10,269,023     6,302,826   8.00       bulk-average
cpumap_kthread  2       3,966,197      0           9          sched
cpumap_kthread  total   3,966,197      0           9          sched-sum
redirect_err    total   0              0          
xdp_exception   total   0              0          

Picture change: XDP RX again reduced to 10 Mpps
● Again limited by page-allocator
● ethtool stats show 1,894,833 <= alloc_rx_page /sec
● Even-though RX-ring size is 1024
● Cpumap_kthread not affected, because not touching page refcnt
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Same UDP consumer - larger recycle cache
Increase RX-ring queue to 2048 to increase page recycle trick

● Result: Userspace delivery 3,321,521 pps
● Before: 2,545,429 pps
● Without XDP, udp_sink saw 3,026,201 pps (unconnected UDP 2,755,547 pps)

Running XDP/eBPF prog_num:1
XDP-cpumap      CPU:to  pps            drop-pps    extra-info
XDP-RX          1       13,481,008     0           0          
XDP-RX          total   13,481,008     0          
cpumap-enqueue    1:2   13,481,008     9,530,719   8.00       bulk-average
cpumap-enqueue  sum:2   13,481,008     9,530,719   8.00       bulk-average
cpumap_kthread  2       3,950,296      0           9          sched
cpumap_kthread  total   3,950,296      0           9          sched-sum
redirect_err    total   0              0          

Performance improvement:
● 3,321,521 - 2,545,429 = +776 Kpps
● (1/3321521 - 1/2545429)*10^9 = -91.79 ns saved
● Cross CPU page free/alloc is expensive



Next slides
Missing features for XDP_REDIRECT

Not too many crazy ideas, they come later
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Current state:

● Generic-XDP redirect via devmap works (without map flush)
○ BUT no bulking occurs, estimate 20-30% gain adding bulking!
○ Cannot intermix with Native-XDP

● Generic-XDP redirect via cpumap disabled

Generic-XDP bulking needed by both devmap and cpumap

● Simply introduce flush point in net_rx_action (like RPS have) ?

Generic-XDP for cpumap challenges

● Require extending/changing queue structures, to support SKBs
● Will lose effect of remote-SKB allocation

○ Option: could free, and allow new SKB on remote CPU(?)

XDP_REDIRECT for Generic-XDP
How close can/should we bring Generic-XDP to Native-XDP...



Next slides
Missing features for cpumap

More crazy ideas...



XDP Infrastructure Development, NetConf 2017 part 2, Seoul, South Korea26

On enqueue: store info in packet data headroom
● Convert xdp_buff into struct xdp_pkt
● For now, cpumap internal data structure, consider generalizing

Cpumap packet structure xdp_pkt

XDP structure layout Packet structure layout

struct xdp_pkt {
void *data;
u16 len;
u16 headroom;
u16 metasize;
struct net_device *dev_rx;

};

struct xdp_buff {
void *data;
void *data_end;
void *data_meta;
void *data_hard_start;

};
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Missing info: On (remote) SKB creation: RX-hash + HW-csum

XDP prog on RX need to see (+ change) RX-hash

● Needed for (cpumap) redirect decision
● Modifying RX-hash (could be) used for GRO steering

How to export/get this info???  (in vendor agnostic way)

Crazy idea: 

1. On enqueue, run BPF prog, somehow read info
○ Populate new xdp_pkt fields like layer4_offset, rx_hash, csum

2. OR on dequeue, run BPF prog, that read info via data_meta
○ Update new (on stack) struct, transfer to SKB (if marked avail)

Cpumap - missing descriptor info
Getting access to info in HW descriptor



XDP Infrastructure Development, NetConf 2017 part 2, Seoul, South Korea28

Multi level partial packet sorting and priority queuing

● Principal: intermixed packet flows become less-intermixed

Levels:

1. First level sorting, already happen on enqueue selecting dest-CPU
2. Extend enqueue, with 8 pkts * 8 buckets (percpu)

○ Select bucket based on RX-hash, 
○ or new helper xdp_redirect_cpu(..., prio, flag_flush)

i. Crazy idea: Bucket zero could mean high prio, queue immediately 
3. Dequeue watch when RX-hash changes, then build batch for GRO

Cpumap missing GRO integration
GRO integration fairly simple: BUT lets do something better!



XDP Infrastructure Development, NetConf 2017 part 2, Seoul, South Korea29

Advanced use-case: on demand activate more CPUs

● When safe to switch a flow to a new CPU?
○ When no packets are in-flight

cpumap pushed responsibility to BPF programmer

● Currently: in-flight detecting only works on dest-CPU level
○ XDP + tracepoints + map-counter, deduct queue is empty

● Flow level in-flight packet detection not possible
○ Proposal next slide...

Cpumap dynamic load-balancing
Problem statement, why this is difficult...
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Extensions to support: flow level OoO-safety require

● Add two BPF progs: to enqueue and dequeue (attached to cpumap)

Cooperating BPF programs, that see packet content/RX-hash

1. Normal XDP-RX, increment enq-flow-counter
2. Enqueue BPF prog, detect drops then decrement enq-flow-counter
3. Dequeue BPF prog, increment deq-flow-counter
● Packets in-flight = enq-flow-counter - deq-flow-counter

Cpumap dynamic load-balancing
Features needed to support flow-level OoO-safety
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Packet drops on enqueue happens when consumer is too slow

● Drop indicate producer is sending too fast
● or consumer CPU is overloaded

Use dropped packet for something

● Allow (enqueue) BPF prog to take new decision?

If protocol is flow-control or congestion aware

● Priority queue packet-drop indication to app/socket

Would allow implementing: https://youtu.be/BO0QhaxBRr0

● Paper: “Re-architecting datacenter networks and stacks for low latency and high performance”

Crazy ideas: Use dropped packets
Make something useful out of packets about to be dropped...

https://youtu.be/BO0QhaxBRr0


End slide
… well sort of, lots of benchmarks as extra slides

plus.google.com/+JesperDangaardBrouer

linkedin.com/in/brouer

youtube.com/channel/UCSypIUCgtI42z63soRMONng

facebook.com/brouer

twitter.com/JesperBrouer
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Thanks to all contributors
XDP + BPF combined effort of many people

● Alexei Starovoitov
● Daniel Borkmann
● Brenden Blanco
● Tom Herbert
● John Fastabend
● Martin KaFai Lau
● Jakub Kicinski
● Jason Wang
● Andy Gospodarek
● Thomas Graf
● Edward Cree

● Michael Chan (bnxt_en)
● Saeed Mahameed (mlx5)
● Tariq Toukan (mlx4)
● Björn Töpel (i40e)
● Yuval Mintz (qede)
● Sunil Goutham (thunderx)
● Jason Wang (VM)
● Michael S. Tsirkin (ptr_ring)



Next slides
Benchmark results for cpumap

Related to scaling cpumap
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Scaling cpumap, 1 RX queue + 4 dest-CPUs
Generator 14.88 Mpps, RX-ring size 2048,  1 RX-queue (ethtool -L ixgbe1 combined 1)

● Prog_num 2: Round-Robin between available CPUs

# ./xdp_redirect_cpu --dev ixgbe1 --prog 2 --cpu 1 --cpu 2 --cpu 3 --cpu 4
Running XDP/eBPF prog_num:2
XDP-cpumap      CPU:to  pps            drop-pps    extra-info
XDP-RX          0       10,042,078     0           0          
XDP-RX          total   10,042,078     0          
cpumap-enqueue    0:1   2,510,519      39          8.00       bulk-average
cpumap-enqueue  sum:1   2,510,519      39          8.00       bulk-average
cpumap-enqueue    0:2   2,510,521      0           8.00       bulk-average
cpumap-enqueue  sum:2   2,510,521      0           8.00       bulk-average
cpumap-enqueue    0:3   2,510,518      179         8.00       bulk-average
cpumap-enqueue  sum:3   2,510,518      179         8.00       bulk-average
cpumap-enqueue    0:4   2,510,520      115         8.00       bulk-average
cpumap-enqueue  sum:4   2,510,520      115         8.00       bulk-average
cpumap_kthread  1       2,510,480      0           80,880     sched
cpumap_kthread  2       2,510,520      0           85,999     sched
cpumap_kthread  3       2,510,344      0           95,320     sched
cpumap_kthread  4       2,510,460      0           125,950    sched
cpumap_kthread  total   10,041,807     0           388,150    sched-sum

Analysis: cpumap_kthread have idle time: more overhead in wake_up_process
● Few page allocs: 642 <= alloc_rx_page /sec

Interesting: kthreads sched=queue-sometimes-empty + can bulk enqueue at same time
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Scaling cpumap, 2 RX queue + 4 dest-CPUs
Generator 14.88 Mpps, RX-ring size 2048,  2 RX-queue (ethtool -L ixgbe1 combined 2)
Running XDP/eBPF prog_num:2
XDP-cpumap      CPU:to  pps            drop-pps    extra-info
XDP-RX          0       9,135,210      0           0          
XDP-RX          1       5,479,637      0           0          
XDP-RX          total   14,614,847     0          
cpumap-enqueue    0:2   2,283,807      401         7.70       bulk-average
cpumap-enqueue    1:2   1,369,906      320         6.80       bulk-average
cpumap-enqueue  sum:2   3,653,713      722         7.34       bulk-average
cpumap-enqueue    0:3   2,283,809      736         7.70       bulk-average
cpumap-enqueue    1:3   1,369,909      472         6.80       bulk-average
cpumap-enqueue  sum:3   3,653,718      1,209       7.34       bulk-average
cpumap-enqueue    0:4   2,283,811      327         7.70       bulk-average
cpumap-enqueue    1:4   1,369,906      195         6.80       bulk-average
cpumap-enqueue  sum:4   3,653,718      522         7.34       bulk-average
cpumap-enqueue    0:5   2,283,809      305         7.70       bulk-average
cpumap-enqueue    1:5   1,369,909      199         6.80       bulk-average
cpumap-enqueue  sum:5   3,653,719      505         7.34       bulk-average
cpumap_kthread  2       3,652,994      0           4,885      sched
cpumap_kthread  3       3,652,507      0           5,225      sched
cpumap_kthread  4       3,653,191      0           4,887      sched
cpumap_kthread  5       3,653,205      0           4,786      sched
cpumap_kthread  total   14,611,899     0           19,785     sched-sum

Basically handling wirespeed 10G, and system have idle cycles
● Only need 2 RX queues to serve+re-distribute 10G/14.6Mpps
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Scaling cpumap, 3 RX queues + 1 dest-CPU
RX-ring size 2048,  4 RX-queue but 3 used (ethtool -L ixgbe1 combined 4)

● New pktgen generator: pktgen_sample05_flow_per_thread.sh -t 4
● Hash in NIC result in uneven distribution of flows, only 3 RX queues used

Running XDP/eBPF prog_num:1
XDP-cpumap      CPU:to  pps            drop-pps    extra-info
XDP-RX          0       3,650,261      0           0          
XDP-RX          2       7,301,400      0           0          
XDP-RX          3       3,650,512      0           0          
XDP-RX          total   14,602,174     0          
cpumap-enqueue    0:5   3,650,267      2,693,478   7.77       bulk-average
cpumap-enqueue    2:5   7,301,415      5,233,577   7.89       bulk-average
cpumap-enqueue    3:5   3,650,521      2,731,520   7.77       bulk-average
cpumap-enqueue  sum:5   14,602,204     10,658,576  7.83       bulk-average
cpumap_kthread  5       3,943,628      0           1          sched
cpumap_kthread  total   3,943,628      0           1          sched-sum

XDP-RX CPUs have many idle cycles
● Good results: cpumap_kthread handle approx 4 Mpps (as in other tests)
● XDP-RX total 14.6Mpps basically wirespeed
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Scaling cpumap, 4 RX queues + 1 dest-CPU
RX-ring size 2048,  4 RX-queue (ethtool -L ixgbe1 combined 4)

● Generator: pktgen_sample05_flow_per_thread.sh -t 8
● Hash in NIC result in uneven distribution of flows (now using 4 RX-queues)

Running XDP/eBPF prog_num:1
XDP-cpumap      CPU:to  pps            drop-pps    extra-info
XDP-RX          0       3,584,590      0           0          
XDP-RX          1       1,795,150      0           0          
XDP-RX          2       5,383,807      0           0          
XDP-RX          3       3,582,162      0           0          
XDP-RX          total   14,345,711     0          
cpumap-enqueue    0:5   3,584,590      2,636,202   7.77       bulk-average
cpumap-enqueue    1:5   1,795,150      1,334,663   7.71       bulk-average
cpumap-enqueue    2:5   5,383,832      3,930,381   7.79       bulk-average
cpumap-enqueue    3:5   3,582,157      2,662,313   7.78       bulk-average
cpumap-enqueue  sum:5   14,345,730     10,563,561  7.77       bulk-average
cpumap_kthread  5       3,782,177      0           4          sched
cpumap_kthread  total   3,782,177      0           4          sched-sum

XDP-RX CPUs have many idle cycles
● Still good results: cpumap_kthread handle approx 3.8 Mpps
● XDP-RX total 14.3Mpps
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Scaling, 4 RX queues + 1 dest-CPU + udp_sink
RX-ring size 2048,  4 RX-queue (ethtool -L ixgbe1 combined 4)

● Userspace delivery
● UDP sink pinned on CPU 4: Performance: 2,650,814 pps

○ Cannot used connected UDP sockets, thus lower perf base expected 2.7Mpps

Running XDP/eBPF prog_num:1
XDP-cpumap      CPU:to  pps            drop-pps    extra-info
XDP-RX          0       3,585,477      0           0          
XDP-RX          1       1,794,914      0           0          
XDP-RX          2       5,375,309      0           0          
XDP-RX          3       3,588,839      0           0          
XDP-RX          total   14,344,540     0          
cpumap-enqueue    0:5   3,585,473      2,924,183   7.77       bulk-average
cpumap-enqueue    1:5   1,794,895      1,471,639   7.70       bulk-average
cpumap-enqueue    2:5   5,375,309      4,367,503   7.79       bulk-average
cpumap-enqueue    3:5   3,588,846      2,929,602   7.77       bulk-average
cpumap-enqueue  sum:5   14,344,525     11,692,929  7.77       bulk-average
cpumap_kthread  5       2,651,601      0           0          
cpumap_kthread  total   2,651,601      0           0      

Notice: cpumap_kthread: limited by UDP enqueue
● top#1 - 13.31% __udp_enqueue_schedule_skb()



Next slides
Benchmark results for cpumap

DDoS protection on the end-host  (running services)
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DDoS protecting end-host
Generator 12.3Mpps (below wirespeed to avoid wire/HW drops)

● Worse-case: Force traffic to share same RX-ring queue
● Prog_num 4: Like prog3, but drop UDP dest port 9 on XDP-RX CPU

# ./xdp_redirect_cpu --dev ixgbe1 --prog 4 --cpu 1 --cpu 2 --cpu 3
Running XDP/eBPF prog_num:4
XDP-cpumap      CPU:to  pps            drop-pps    extra-info
XDP-RX          0       12,245,665     12,210,629  0          
XDP-RX          total   12,245,665     12,210,629 
cpumap-enqueue    0:1   35,036         0           1.00       bulk-average
cpumap-enqueue  sum:1   35,036         0           1.00       bulk-average
cpumap_kthread  1       35,036         0           35,036     sched
cpumap_kthread  total   35,036         0           35,036     sched-sum
redirect_err    total   0              0          
xdp_exception   total   0              0      

Notice: XDP-RX CPU had 44% idle cycles (while dropping 12.2Mpps)
● Netperf TCP_RR test shows 35K trans/sec, during DDoS attack

○ Normal 40K trans/sec, Limit in NIC-HW cause this
■ using separate RXq the same result
■ Reducing load to 6.4Mpps then 40K trans/sec
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DDoS protecting end-host
Generator reduced to 6.2 Mpps

● Worse-case: Force traffic to share same RX-ring queue
● Prog_num 4: Like prog3, but drop UDP dest port 9 on XDP-RX CPU

# ./xdp_redirect_cpu --dev ixgbe1 --prog 4 --cpu 2 --cpu 3 --cpu 4
Running XDP/eBPF prog_num:4
XDP-cpumap      CPU:to  pps            drop-pps    extra-info
XDP-RX          1       6,277,030      6,236,628   0          
XDP-RX          total   6,277,030      6,236,628  
cpumap-enqueue    1:2   40,402         0           1.00       bulk-average
cpumap-enqueue  sum:2   40,402         0           1.00       bulk-average
cpumap_kthread  2       40,402         0           40,402     sched
cpumap_kthread  total   40,402         0           40,402     sched-sum
redirect_err    total   0              0          
xdp_exception   total   0              0          

Reducing load to 6.4Mpps
● Netperf TCP_RR now shows 40K trans/sec, during DDoS attack
● AFAIK limit in ixgbe HW handing out descriptors
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Generator
● sss

Running XDP/eBPF prog_num:1

Imp
● S


