
XDP Infrastructure development
Bold new ideas… that might never happen!

Jesper Dangaard Brouer,
Principal Engineer, Red Hat Inc.

NetConf 2017 part-2
South Korea, Seoul, November 2017

XDP Infrastructure Development, NetConf 2017 part 2, Seoul, South Korea2

Presentation is primarily XDP progress, missing features and issues

● As a ground for discussion
● Discussing bold new ideas

○ … that might NEVER be implemented

This presentation is mostly relevant to:

● Infrastructure developers of XDP

Background for these slides
Presented at “closed” invite-only conference NetConf

http://vger.kernel.org/netconf2017part2.html

XDP Infrastructure Development, NetConf 2017 part 2, Seoul, South Korea3

Basically: New layer in the kernel network stack

● Before allocating the SKB
● Means: Competing at the same “layer” as DPDK / netmap

Together with other eBPF hooks (like TC), opens for

● User programmable networking
○ Powerful flexibility offered to userspace

What is XDP really
New layer in the kernel network stack

XDP Infrastructure Development, NetConf 2017 part 2, Seoul, South Korea4

Driver: ixgbe+i40e

● killed: 1-page per packet restriction
● Tie us into refcnt based page model
● Be careful this doesn’t kill new memory model for networking

New XDP_REDIRECT action

● Limited driver support :-(
● Innovative part: Redirect using maps - helper: bpf_redirect_map()
● Indirectly got RX bulking, via redirect maps

Progress
Follow Up since NetConf in Montreal April 2017
See previous presentation: Here

http://vger.kernel.org/netconf2017.html
http://people.netfilter.org/hawk/presentations/NetConf2017/xdp_work_ahead_NetConf_April_2017.pdf

XDP Infrastructure Development, NetConf 2017 part 2, Seoul, South Korea5

Currently avoiding memory layer

● XDP_{DROP,TX} avoid calling memory layer
○ Driver contained, free to perform local page recycle tricks

XDP_REDIRECT cannot avoid memory layer

● Remote driver need to free/return page at DMA TX completion
● Currently based on page_frag_free()/put_page() refcnt

○ Recycling only works for ixgbe 2-pkts per page trick
○ Easily demonstrate ixgbe recycle size it too small

● Danger: Destroy opportunity for new memory model for RX-rings
○ Need fixed/known page-return point, not racing on refcnt

● Edward Cree: Suggested driver NDO for returning (XDP) pages

Remaining issues
The headaches not cured yet

XDP Infrastructure Development, NetConf 2017 part 2, Seoul, South Korea6

XDP redirect with maps

● Is the port-table idea from Montreal

XDP_REDIRECT via direct ifindex did happen

● Concerns addressed via
○ Egress ifindex also need to have loaded an XDP program
○ Monitor activity via tracepoints

● Using ifindex is significantly slower than using redirect maps
○ Non-map ifindex 8 Mpps -> devmap 13 Mpps
○ Devmap faster due bulking via delayed tailptr write

XDP_REDIRECT what got implemented?
Related to ifindex vs port-table discussions in Montreal

http://people.netfilter.org/hawk/presentations/NetConf2017/xdp_work_ahead_NetConf_April_2017.pdf

XDP Infrastructure Development, NetConf 2017 part 2, Seoul, South Korea7

The last XDP driver action return code (hopefully?)

● New types of redirect can be introduced without driver changes

Can be used for dynamic adaptive RX bulking

● Method of adding bulking without introducing additional latency
● Bulk only frames available in driver NAPI poll loop
● Via (driver) flush operation after napi_poll

Could be used for priority queuing

● Between frames available during NAPI poll

XDP_REDIRECT via maps
Why is XDP_REDIRECT via maps innovative?

XDP Infrastructure Development, NetConf 2017 part 2, Seoul, South Korea8

Map types for redirect:

● devmap - BPF_MAP_TYPE_DEVMAP
○ Redirect to net_devices, require new driver NDO
○ Bulk effect via delaying HW tail/doorbell (like xmit_more)

● cpumap - BPF_MAP_TYPE_CPUMAP
○ Redirect raw XDP frames to remote CPUs, that alloc SKBs
○ Much more on next slide...

New map types for redirect
What is currently implemented?

Next slides
XDP_REDIRECT issues

Common mistakes and issues with XDP_REDIRECT

XDP Infrastructure Development, NetConf 2017 part 2, Seoul, South Korea

XDP prog return XDP_REDIRECT

● BUT have no knowledge if packet is dropped
● Sample xdp_redirect{_map} report RX-packets

○ People misguide think this equal forward TX pkts
○ Default setting will RX=13Mpps TX=6.3Mpps

■ Partly fixed via ixgbe adaptive TX DMA cleanup interval

Knowledge of drops via tracepoints

● Drop also occur due to misconfig
● (Currently) different ERRNO return code used to distinguish
● Tracepoint cost ~25ns, which affect XDP performance (split into _err)

XDP_REDIRECT pitfalls
Common mistakes and issues with XDP_REDIRECT

XDP Infrastructure Development, NetConf 2017 part 2, Seoul, South Korea

Issue: ndo_xdp_xmit queue single xdp_buff frame

● Driver must provide/alloc dedicated XDP TX queues per CPU
○ AFAIK holding back driver adoption

● Simple solution: Bulk enqueue (like cpumap)
○ Relevant xmit to VMs (queue almost empty case, cache-bounce)

Issue: no page return method or handle

● De Facto enforced refcnt based model for page return
● Info/ref to RX-device is lost, thus no later return API possible

XDP_REDIRECT API issues
API issues with
 int ndo_xdp_xmit(struct net_device *dev, struct xdp_buff *xdp)

Next slides
Describe CPUMAP current state

How the merged code works!

XDP Infrastructure Development, NetConf 2017 part 2, Seoul, South Korea13

Basic cpumap properties

● Enables redirection XDP frames to remote CPUs
● Moved SKB allocation outside driver (could help simplify drivers)

Scalability and isolation mechanism

● Allows isolating/decouple driver XDP layer from network stack
○ Don't delay XDP by deep call into network stack

● Enables DDoS protection on end-hosts (that run services)
○ XDP fast-enough to avoid packet drops happen in HW NICs

XDP_REDIRECT + cpumap
What is cpumap redirect?

XDP Infrastructure Development, NetConf 2017 part 2, Seoul, South Korea14

Cpumap architecture: Every slot in array-map: dest-CPU

● MPSC (Multi Producer Single Consumer) model: per dest-CPU
○ Multiple RX-queue CPUs can enqueue to single dest-CPU

● Fast per CPU enqueue store (for now) 8 packets
○ Amortized enqueue cost to shared ptr_ring queue via bulk-enq

● Lockless dequeue, via pinning kthread CPU and disallow ptr_ring resize

Important properties from main shared queue ptr_ring (cyclic array based)

● Enqueue+dequeue don't share cache-line for synchronization
○ Synchronization happen based on elements
○ In queue almost full case, avoid cache-line bouncing
○ In queue almost empty case, reduce cache-line bouncing via bulk-enq

Cpumap redirect CPU scaling
Tricky part getting cross CPU delivery fast-enough

XDP Infrastructure Development, NetConf 2017 part 2, Seoul, South Korea15

XDP_REDIRECT
enqueue into

cpumap

Kthread dequeue

Start normal
netstack

App can run on
another CPU via

socket queue

CPU scheduling via cpumap
Queuing and scheduling in cpumap

CPU#2
kthread

CPU#1
NAPI RX

CPU#3
Userspace

sched

Hint: Same CPU sched possible
● But adjust /proc/sys/kernel/sched_wakeup_granularity_ns

Next slides
Benchmark results for cpumap

Related to page refcnt and recycle tricks

XDP Infrastructure Development, NetConf 2017 part 2, Seoul, South Korea17

The program sample/bpf: xdp_redirect_cpu

● Have several XDP progs to choose between via --prog
○ Prog_num 0: Redir 1 CPU - no-touch data
○ Prog_num 1: Redir 1 CPU - touch data
○ Prog_num 2: Round-Robin between avail CPUs
○ Prog_num 3: Separate in proto UDP/TCP/ICMP , need 3 CPUs
○ Prog_num 4: Like prog3, but drop UDP dest port 9 in XDP-RX CPU

● CPUs are added via --cpu (specify multiple times, depend on prog usage)

Sample/bpf xdp_redirect_cpu
Program used for benchmarking XDP cpumap, while developing

XDP Infrastructure Development, NetConf 2017 part 2, Seoul, South Korea18

Simply redirect from CPU-1 to CPU-2
Generator ./pktgen_sample03_burst_single_flow.sh -t 1

● Sending single UDP flow with 7.1Mpps
● Packets dropped due to "UdpNoPorts" listener

./xdp_redirect_cpu --dev ixgbe1 --prog 1 --cpu 2

Running XDP/eBPF prog_num:1
XDP-cpumap CPU:to pps drop-pps extra-info
XDP-RX 1 7,139,086 0 0
XDP-RX total 7,139,086 0
cpumap-enqueue 1:2 7,138,979 3,123,418 8.00 bulk-average
cpumap-enqueue sum:2 7,138,979 3,123,418 8.00 bulk-average
cpumap_kthread 2 4,015,615 0 101 sched
cpumap_kthread total 4,015,615 0 101 sched-sum
redirect_err total 0 0
xdp_exception total 0 0

Impressive 4Mpps getting forwarded to remote CPU
● SKB alloc, netstack, kfree_skb
● Refcnt cost on CPU-2: 9.01% page_frag_free()

XDP Infrastructure Development, NetConf 2017 part 2, Seoul, South Korea19

Increase load - same test
Same test: Simple redirect from CPU-1 to CPU-2

● Generator sending 14.88Mpps

Running XDP/eBPF prog_num:1
XDP-cpumap CPU:to pps drop-pps extra-info
XDP-RX 1 10,312,899 0 0
XDP-RX total 10,312,899 0
cpumap-enqueue 1:2 10,312,890 7,283,321 8.00 bulk-average
cpumap-enqueue sum:2 10,312,890 7,283,321 8.00 bulk-average
cpumap_kthread 2 3,029,580 0 9 sched
cpumap_kthread total 3,029,580 0 9 sched-sum
redirect_err total 0 0
xdp_exception total 0 0

What happened? - ixgbe page recycle trick fails!
● CPU redirect drop from 4Mpps to 3Mpps
● XDP input limited to 10.3Mpps

Ethtool stats counter: 2,229,493 <= alloc_rx_page /sec (x2 for PPS)
● Perf show free_one_page() stall on page-alloc spinlock

XDP Infrastructure Development, NetConf 2017 part 2, Seoul, South Korea20

Same test - increase page-recycles size
Need more pages to recycle

● Ixgbe recycle tied to RX-ring size, increase from 512 to 1024
● ethtool -G ixgbe1 rx 1024 tx 1024

Running XDP/eBPF prog_num:1
XDP-cpumap CPU:to pps drop-pps extra-info
XDP-RX 1 13,510,564 0 0
XDP-RX total 13,510,564 0
cpumap-enqueue 1:2 13,510,564 9,490,196 8.00 bulk-average
cpumap-enqueue sum:2 13,510,564 9,490,196 8.00 bulk-average
cpumap_kthread 2 4,020,367 0 8 sched
cpumap_kthread total 4,020,367 0 8 sched-sum

Solved problem: again 4 Mpps redirect to CPU-2
● 13.5Mpps limit might be related to HW limit in NIC (MPC HW counter)

XDP Infrastructure Development, NetConf 2017 part 2, Seoul, South Korea21

Start userspace UDP consumer
Generator pktgen 14.88 Mpps

● UDP sink pinned on CPU 4
● Result: Userspace delivery 2,545,429 pps

Running XDP/eBPF prog_num:1
XDP-cpumap CPU:to pps drop-pps extra-info
XDP-RX 1 10,269,035 0 0
XDP-RX total 10,269,035 0
cpumap-enqueue 1:2 10,269,023 6,302,826 8.00 bulk-average
cpumap-enqueue sum:2 10,269,023 6,302,826 8.00 bulk-average
cpumap_kthread 2 3,966,197 0 9 sched
cpumap_kthread total 3,966,197 0 9 sched-sum
redirect_err total 0 0
xdp_exception total 0 0

Picture change: XDP RX again reduced to 10 Mpps
● Again limited by page-allocator
● ethtool stats show 1,894,833 <= alloc_rx_page /sec
● Even-though RX-ring size is 1024
● Cpumap_kthread not affected, because not touching page refcnt

XDP Infrastructure Development, NetConf 2017 part 2, Seoul, South Korea22

Same UDP consumer - larger recycle cache
Increase RX-ring queue to 2048 to increase page recycle trick

● Result: Userspace delivery 3,321,521 pps
● Before: 2,545,429 pps
● Without XDP, udp_sink saw 3,026,201 pps (unconnected UDP 2,755,547 pps)

Running XDP/eBPF prog_num:1
XDP-cpumap CPU:to pps drop-pps extra-info
XDP-RX 1 13,481,008 0 0
XDP-RX total 13,481,008 0
cpumap-enqueue 1:2 13,481,008 9,530,719 8.00 bulk-average
cpumap-enqueue sum:2 13,481,008 9,530,719 8.00 bulk-average
cpumap_kthread 2 3,950,296 0 9 sched
cpumap_kthread total 3,950,296 0 9 sched-sum
redirect_err total 0 0

Performance improvement:
● 3,321,521 - 2,545,429 = +776 Kpps
● (1/3321521 - 1/2545429)*10^9 = -91.79 ns saved
● Cross CPU page free/alloc is expensive

Next slides
Missing features for XDP_REDIRECT

Not too many crazy ideas, they come later

XDP Infrastructure Development, NetConf 2017 part 2, Seoul, South Korea24

Current state:

● Generic-XDP redirect via devmap works (without map flush)
○ BUT no bulking occurs, estimate 20-30% gain adding bulking!
○ Cannot intermix with Native-XDP

● Generic-XDP redirect via cpumap disabled

Generic-XDP bulking needed by both devmap and cpumap

● Simply introduce flush point in net_rx_action (like RPS have) ?

Generic-XDP for cpumap challenges

● Require extending/changing queue structures, to support SKBs
● Will lose effect of remote-SKB allocation

○ Option: could free, and allow new SKB on remote CPU(?)

XDP_REDIRECT for Generic-XDP
How close can/should we bring Generic-XDP to Native-XDP...

Next slides
Missing features for cpumap

More crazy ideas...

XDP Infrastructure Development, NetConf 2017 part 2, Seoul, South Korea26

On enqueue: store info in packet data headroom
● Convert xdp_buff into struct xdp_pkt
● For now, cpumap internal data structure, consider generalizing

Cpumap packet structure xdp_pkt

XDP structure layout Packet structure layout

struct xdp_pkt {
void *data;
u16 len;
u16 headroom;
u16 metasize;
struct net_device *dev_rx;

};

struct xdp_buff {
void *data;
void *data_end;
void *data_meta;
void *data_hard_start;

};

XDP Infrastructure Development, NetConf 2017 part 2, Seoul, South Korea27

Missing info: On (remote) SKB creation: RX-hash + HW-csum

XDP prog on RX need to see (+ change) RX-hash

● Needed for (cpumap) redirect decision
● Modifying RX-hash (could be) used for GRO steering

How to export/get this info??? (in vendor agnostic way)

Crazy idea:

1. On enqueue, run BPF prog, somehow read info
○ Populate new xdp_pkt fields like layer4_offset, rx_hash, csum

2. OR on dequeue, run BPF prog, that read info via data_meta
○ Update new (on stack) struct, transfer to SKB (if marked avail)

Cpumap - missing descriptor info
Getting access to info in HW descriptor

XDP Infrastructure Development, NetConf 2017 part 2, Seoul, South Korea28

Multi level partial packet sorting and priority queuing

● Principal: intermixed packet flows become less-intermixed

Levels:

1. First level sorting, already happen on enqueue selecting dest-CPU
2. Extend enqueue, with 8 pkts * 8 buckets (percpu)

○ Select bucket based on RX-hash,
○ or new helper xdp_redirect_cpu(..., prio, flag_flush)

i. Crazy idea: Bucket zero could mean high prio, queue immediately
3. Dequeue watch when RX-hash changes, then build batch for GRO

Cpumap missing GRO integration
GRO integration fairly simple: BUT lets do something better!

XDP Infrastructure Development, NetConf 2017 part 2, Seoul, South Korea29

Advanced use-case: on demand activate more CPUs

● When safe to switch a flow to a new CPU?
○ When no packets are in-flight

cpumap pushed responsibility to BPF programmer

● Currently: in-flight detecting only works on dest-CPU level
○ XDP + tracepoints + map-counter, deduct queue is empty

● Flow level in-flight packet detection not possible
○ Proposal next slide...

Cpumap dynamic load-balancing
Problem statement, why this is difficult...

XDP Infrastructure Development, NetConf 2017 part 2, Seoul, South Korea30

Extensions to support: flow level OoO-safety require

● Add two BPF progs: to enqueue and dequeue (attached to cpumap)

Cooperating BPF programs, that see packet content/RX-hash

1. Normal XDP-RX, increment enq-flow-counter
2. Enqueue BPF prog, detect drops then decrement enq-flow-counter
3. Dequeue BPF prog, increment deq-flow-counter
● Packets in-flight = enq-flow-counter - deq-flow-counter

Cpumap dynamic load-balancing
Features needed to support flow-level OoO-safety

XDP Infrastructure Development, NetConf 2017 part 2, Seoul, South Korea31

Packet drops on enqueue happens when consumer is too slow

● Drop indicate producer is sending too fast
● or consumer CPU is overloaded

Use dropped packet for something

● Allow (enqueue) BPF prog to take new decision?

If protocol is flow-control or congestion aware

● Priority queue packet-drop indication to app/socket

Would allow implementing: https://youtu.be/BO0QhaxBRr0

● Paper: “Re-architecting datacenter networks and stacks for low latency and high performance”

Crazy ideas: Use dropped packets
Make something useful out of packets about to be dropped...

https://youtu.be/BO0QhaxBRr0

End slide
… well sort of, lots of benchmarks as extra slides

plus.google.com/+JesperDangaardBrouer

linkedin.com/in/brouer

youtube.com/channel/UCSypIUCgtI42z63soRMONng

facebook.com/brouer

twitter.com/JesperBrouer

XDP Infrastructure Development, NetConf 2017 part 2, Seoul, South Korea33

Thanks to all contributors
XDP + BPF combined effort of many people

● Alexei Starovoitov
● Daniel Borkmann
● Brenden Blanco
● Tom Herbert
● John Fastabend
● Martin KaFai Lau
● Jakub Kicinski
● Jason Wang
● Andy Gospodarek
● Thomas Graf
● Edward Cree

● Michael Chan (bnxt_en)
● Saeed Mahameed (mlx5)
● Tariq Toukan (mlx4)
● Björn Töpel (i40e)
● Yuval Mintz (qede)
● Sunil Goutham (thunderx)
● Jason Wang (VM)
● Michael S. Tsirkin (ptr_ring)

Next slides
Benchmark results for cpumap

Related to scaling cpumap

XDP Infrastructure Development, NetConf 2017 part 2, Seoul, South Korea35

Scaling cpumap, 1 RX queue + 4 dest-CPUs
Generator 14.88 Mpps, RX-ring size 2048, 1 RX-queue (ethtool -L ixgbe1 combined 1)

● Prog_num 2: Round-Robin between available CPUs

./xdp_redirect_cpu --dev ixgbe1 --prog 2 --cpu 1 --cpu 2 --cpu 3 --cpu 4
Running XDP/eBPF prog_num:2
XDP-cpumap CPU:to pps drop-pps extra-info
XDP-RX 0 10,042,078 0 0
XDP-RX total 10,042,078 0
cpumap-enqueue 0:1 2,510,519 39 8.00 bulk-average
cpumap-enqueue sum:1 2,510,519 39 8.00 bulk-average
cpumap-enqueue 0:2 2,510,521 0 8.00 bulk-average
cpumap-enqueue sum:2 2,510,521 0 8.00 bulk-average
cpumap-enqueue 0:3 2,510,518 179 8.00 bulk-average
cpumap-enqueue sum:3 2,510,518 179 8.00 bulk-average
cpumap-enqueue 0:4 2,510,520 115 8.00 bulk-average
cpumap-enqueue sum:4 2,510,520 115 8.00 bulk-average
cpumap_kthread 1 2,510,480 0 80,880 sched
cpumap_kthread 2 2,510,520 0 85,999 sched
cpumap_kthread 3 2,510,344 0 95,320 sched
cpumap_kthread 4 2,510,460 0 125,950 sched
cpumap_kthread total 10,041,807 0 388,150 sched-sum

Analysis: cpumap_kthread have idle time: more overhead in wake_up_process
● Few page allocs: 642 <= alloc_rx_page /sec

Interesting: kthreads sched=queue-sometimes-empty + can bulk enqueue at same time

XDP Infrastructure Development, NetConf 2017 part 2, Seoul, South Korea36

Scaling cpumap, 2 RX queue + 4 dest-CPUs
Generator 14.88 Mpps, RX-ring size 2048, 2 RX-queue (ethtool -L ixgbe1 combined 2)
Running XDP/eBPF prog_num:2
XDP-cpumap CPU:to pps drop-pps extra-info
XDP-RX 0 9,135,210 0 0
XDP-RX 1 5,479,637 0 0
XDP-RX total 14,614,847 0
cpumap-enqueue 0:2 2,283,807 401 7.70 bulk-average
cpumap-enqueue 1:2 1,369,906 320 6.80 bulk-average
cpumap-enqueue sum:2 3,653,713 722 7.34 bulk-average
cpumap-enqueue 0:3 2,283,809 736 7.70 bulk-average
cpumap-enqueue 1:3 1,369,909 472 6.80 bulk-average
cpumap-enqueue sum:3 3,653,718 1,209 7.34 bulk-average
cpumap-enqueue 0:4 2,283,811 327 7.70 bulk-average
cpumap-enqueue 1:4 1,369,906 195 6.80 bulk-average
cpumap-enqueue sum:4 3,653,718 522 7.34 bulk-average
cpumap-enqueue 0:5 2,283,809 305 7.70 bulk-average
cpumap-enqueue 1:5 1,369,909 199 6.80 bulk-average
cpumap-enqueue sum:5 3,653,719 505 7.34 bulk-average
cpumap_kthread 2 3,652,994 0 4,885 sched
cpumap_kthread 3 3,652,507 0 5,225 sched
cpumap_kthread 4 3,653,191 0 4,887 sched
cpumap_kthread 5 3,653,205 0 4,786 sched
cpumap_kthread total 14,611,899 0 19,785 sched-sum

Basically handling wirespeed 10G, and system have idle cycles
● Only need 2 RX queues to serve+re-distribute 10G/14.6Mpps

XDP Infrastructure Development, NetConf 2017 part 2, Seoul, South Korea37

Scaling cpumap, 3 RX queues + 1 dest-CPU
RX-ring size 2048, 4 RX-queue but 3 used (ethtool -L ixgbe1 combined 4)

● New pktgen generator: pktgen_sample05_flow_per_thread.sh -t 4
● Hash in NIC result in uneven distribution of flows, only 3 RX queues used

Running XDP/eBPF prog_num:1
XDP-cpumap CPU:to pps drop-pps extra-info
XDP-RX 0 3,650,261 0 0
XDP-RX 2 7,301,400 0 0
XDP-RX 3 3,650,512 0 0
XDP-RX total 14,602,174 0
cpumap-enqueue 0:5 3,650,267 2,693,478 7.77 bulk-average
cpumap-enqueue 2:5 7,301,415 5,233,577 7.89 bulk-average
cpumap-enqueue 3:5 3,650,521 2,731,520 7.77 bulk-average
cpumap-enqueue sum:5 14,602,204 10,658,576 7.83 bulk-average
cpumap_kthread 5 3,943,628 0 1 sched
cpumap_kthread total 3,943,628 0 1 sched-sum

XDP-RX CPUs have many idle cycles
● Good results: cpumap_kthread handle approx 4 Mpps (as in other tests)
● XDP-RX total 14.6Mpps basically wirespeed

XDP Infrastructure Development, NetConf 2017 part 2, Seoul, South Korea38

Scaling cpumap, 4 RX queues + 1 dest-CPU
RX-ring size 2048, 4 RX-queue (ethtool -L ixgbe1 combined 4)

● Generator: pktgen_sample05_flow_per_thread.sh -t 8
● Hash in NIC result in uneven distribution of flows (now using 4 RX-queues)

Running XDP/eBPF prog_num:1
XDP-cpumap CPU:to pps drop-pps extra-info
XDP-RX 0 3,584,590 0 0
XDP-RX 1 1,795,150 0 0
XDP-RX 2 5,383,807 0 0
XDP-RX 3 3,582,162 0 0
XDP-RX total 14,345,711 0
cpumap-enqueue 0:5 3,584,590 2,636,202 7.77 bulk-average
cpumap-enqueue 1:5 1,795,150 1,334,663 7.71 bulk-average
cpumap-enqueue 2:5 5,383,832 3,930,381 7.79 bulk-average
cpumap-enqueue 3:5 3,582,157 2,662,313 7.78 bulk-average
cpumap-enqueue sum:5 14,345,730 10,563,561 7.77 bulk-average
cpumap_kthread 5 3,782,177 0 4 sched
cpumap_kthread total 3,782,177 0 4 sched-sum

XDP-RX CPUs have many idle cycles
● Still good results: cpumap_kthread handle approx 3.8 Mpps
● XDP-RX total 14.3Mpps

XDP Infrastructure Development, NetConf 2017 part 2, Seoul, South Korea39

Scaling, 4 RX queues + 1 dest-CPU + udp_sink
RX-ring size 2048, 4 RX-queue (ethtool -L ixgbe1 combined 4)

● Userspace delivery
● UDP sink pinned on CPU 4: Performance: 2,650,814 pps

○ Cannot used connected UDP sockets, thus lower perf base expected 2.7Mpps

Running XDP/eBPF prog_num:1
XDP-cpumap CPU:to pps drop-pps extra-info
XDP-RX 0 3,585,477 0 0
XDP-RX 1 1,794,914 0 0
XDP-RX 2 5,375,309 0 0
XDP-RX 3 3,588,839 0 0
XDP-RX total 14,344,540 0
cpumap-enqueue 0:5 3,585,473 2,924,183 7.77 bulk-average
cpumap-enqueue 1:5 1,794,895 1,471,639 7.70 bulk-average
cpumap-enqueue 2:5 5,375,309 4,367,503 7.79 bulk-average
cpumap-enqueue 3:5 3,588,846 2,929,602 7.77 bulk-average
cpumap-enqueue sum:5 14,344,525 11,692,929 7.77 bulk-average
cpumap_kthread 5 2,651,601 0 0
cpumap_kthread total 2,651,601 0 0

Notice: cpumap_kthread: limited by UDP enqueue
● top#1 - 13.31% __udp_enqueue_schedule_skb()

Next slides
Benchmark results for cpumap

DDoS protection on the end-host (running services)

XDP Infrastructure Development, NetConf 2017 part 2, Seoul, South Korea41

DDoS protecting end-host
Generator 12.3Mpps (below wirespeed to avoid wire/HW drops)

● Worse-case: Force traffic to share same RX-ring queue
● Prog_num 4: Like prog3, but drop UDP dest port 9 on XDP-RX CPU

./xdp_redirect_cpu --dev ixgbe1 --prog 4 --cpu 1 --cpu 2 --cpu 3
Running XDP/eBPF prog_num:4
XDP-cpumap CPU:to pps drop-pps extra-info
XDP-RX 0 12,245,665 12,210,629 0
XDP-RX total 12,245,665 12,210,629
cpumap-enqueue 0:1 35,036 0 1.00 bulk-average
cpumap-enqueue sum:1 35,036 0 1.00 bulk-average
cpumap_kthread 1 35,036 0 35,036 sched
cpumap_kthread total 35,036 0 35,036 sched-sum
redirect_err total 0 0
xdp_exception total 0 0

Notice: XDP-RX CPU had 44% idle cycles (while dropping 12.2Mpps)
● Netperf TCP_RR test shows 35K trans/sec, during DDoS attack

○ Normal 40K trans/sec, Limit in NIC-HW cause this
■ using separate RXq the same result
■ Reducing load to 6.4Mpps then 40K trans/sec

XDP Infrastructure Development, NetConf 2017 part 2, Seoul, South Korea42

DDoS protecting end-host
Generator reduced to 6.2 Mpps

● Worse-case: Force traffic to share same RX-ring queue
● Prog_num 4: Like prog3, but drop UDP dest port 9 on XDP-RX CPU

./xdp_redirect_cpu --dev ixgbe1 --prog 4 --cpu 2 --cpu 3 --cpu 4
Running XDP/eBPF prog_num:4
XDP-cpumap CPU:to pps drop-pps extra-info
XDP-RX 1 6,277,030 6,236,628 0
XDP-RX total 6,277,030 6,236,628
cpumap-enqueue 1:2 40,402 0 1.00 bulk-average
cpumap-enqueue sum:2 40,402 0 1.00 bulk-average
cpumap_kthread 2 40,402 0 40,402 sched
cpumap_kthread total 40,402 0 40,402 sched-sum
redirect_err total 0 0
xdp_exception total 0 0

Reducing load to 6.4Mpps
● Netperf TCP_RR now shows 40K trans/sec, during DDoS attack
● AFAIK limit in ixgbe HW handing out descriptors

XDP Infrastructure Development, NetConf 2017 part 2, Seoul, South Korea43

Generator
● sss

Running XDP/eBPF prog_num:1

Imp
● S

