
Jesper Dangaard Brouer
Kernel Developer

Red Hat

ebplane hosted by Juniper
USA, Sunnyvale, Oct 2019

Introduction to: XDP and BPF
building blocks

Introduction to: XDP and BPF building blocks
1

The ’ebplane’ project
The ebplane project: early startup phase

Initial presentation title:
Shows interest in leveraging eBPF technology for networking

Yet to be defined: use-cases and network-layers to target
This presentation: eBPF technology level setting

Building blocks and their limitations
Designing with eBPF requires slightly different thinking…

essential for success of this project

“Universal Data Plane Proposal”

Introduction to: XDP and BPF building blocks - Jesper Dangaard Brouer < >brouer@redhat.com
2

https://docs.google.com/presentation/d/1JHrl8PlLyVRSMvtF8OUa3BW3GcRf4a3Kx2CPw2g7tJg/edit?ts=5d542a23#slide=id.p
mailto:brouer@redhat.com

Different design thinking: High level overview
Wrong approach: Designing new data plane from scratch
Key insight #1: Modify behaviour of existing system (Linux kernel)

Via injecting code snippets at different hooks
BPF code snippets are event-based and by default stateless
Obtain state and change runtime behaviour via shared BPF-maps

Key insight #2: Only load code when actually needed
The fastest code is code that doesn’t run (or even gets loaded)
Design system to only load code relevant to user configured use-case
E.g. don’t implement generic parser to handle every known protocol

instead create parser specific to user’s need/config

Introduction to: XDP and BPF building blocks - Jesper Dangaard Brouer < >brouer@redhat.com
3

mailto:brouer@redhat.com

Basic introduction and understanding of eBPF
Technical: Getting up to speed on eBPF technology
Basic introduction and understanding of BPF

eBPF bytecode
Compiling restricted-C to eBPF

compiler stores this in ELF-format
which can be loaded into the Linux kernel

Introduction to: XDP and BPF building blocks - Jesper Dangaard Brouer < >brouer@redhat.com
4

mailto:brouer@redhat.com

eBPF bytecode and kernel hooks
The eBPF bytecode is:

Generic Instruction Set Architecture (ISA) with C calling convention
Read: the eBPF assembly language

Designed to run in the Linux kernel
It is not a kernel module
It is a sandbox technology; BPF verfier ensures code safety
Kernel provides eBPF runtime environment, via BPF helper calls

Different Linux kernel hooks run eBPF bytecode, event triggered
Two hooks of special interest: XDP and TC-BPF
Many more eBPF hooks (tracepoints, all function calls via kprobe)

Introduction to: XDP and BPF building blocks - Jesper Dangaard Brouer < >brouer@redhat.com
5

mailto:brouer@redhat.com

Compiling restricted-C to eBPF into ELF
LLVM compiler has an eBPF backend (to avoid writing eBPF assembly by hand)

Write Restricted C – some limits imposed by sandbox BPF-verifier
Compiler produces a standard ELF “executable” file

Cannot execute this file directly, as the eBPF runtime is inside the kernel
Need an ELF loader that can:

Extract the eBPF bytecode and eBPF maps
Do ELF relocation of eBPF map references in bytecode
Create/load eBPF maps and bytecode into kernel

Attaching to hook is a separate step

Introduction to: XDP and BPF building blocks - Jesper Dangaard Brouer < >brouer@redhat.com
6

mailto:brouer@redhat.com

Recommend using libbpf
Recommend using libbpf as the ELF loader for eBPF

libbpf is part of Linux kernel tree
Facebook fortunately exports this to

XDP-tutorial git repo, uses as git-submodule
Please userspace apps: Everybody should use this library

Unfortunately several loaders exists
Worst case is iproute2 has its own

causes incompatible ELF object, if using eBPF maps
(plan to converting iproute2 to use libbpf)

https://github.com/libbpf
libbpf

Introduction to: XDP and BPF building blocks - Jesper Dangaard Brouer < >brouer@redhat.com
7

https://github.com/libbpf
https://github.com/libbpf/libbpf
mailto:brouer@redhat.com

eBPF concepts: context, maps and helpers
Each eBPF runtime event hook gets a pointer to a context struct

BPF bytecode has access to context (read/write limited)
verifier may adjust the bytecode for safety

The BPF program itself is stateless
eBPF maps can be used to create state and “config”
Maps are basically key = value construct

BPF helpers are used for
Calling kernel functions, to obtain info/state from kernel

Introduction to: XDP and BPF building blocks - Jesper Dangaard Brouer < >brouer@redhat.com
8

mailto:brouer@redhat.com

Introducing XDP
ebplane: how to leverage eBPF technology for networking

One option is XDP (eXpress Data Path)
When targeting network layers L2-L3
L4 use-cases come with some caveats

Introduction to: XDP and BPF building blocks - Jesper Dangaard Brouer < >brouer@redhat.com
9

mailto:brouer@redhat.com

What is XDP?
XDP (eXpress Data Path) is a Linux in-kernel fast-path

New programmable layer in-front of traditional network stack
Read, modify, drop, redirect or pass

For L2-L3 use-cases: seeing x10 performance improvements!
Similar speeds as DPDK

Can accelerate in-kernel L2-L3 use-cases (e.g. forwarding)
What is AF_XDP? (the Address Family XDP socket)

Hybrid kernel-bypass facility via XDP_REDIRECT filter
Delivers raw L2 frames into userspace (in SPSC queue)

Introduction to: XDP and BPF building blocks - Jesper Dangaard Brouer < >brouer@redhat.com
10

mailto:brouer@redhat.com

What makes XDP different and better?
Not bypass, but in-kernel fast-path
The killer feature of XDP is integration with Linux kernel,

Leverages existing kernel infrastructure, eco-system and market position
Programmable flexibility via eBPF sandboxing (kernel infra)
Flexible sharing of NIC resources between Linux and XDP
Kernel maintains NIC drivers, easy to deploy everywhere
Cooperation with netstack via eBPF-helpers and fallback-handling
No need to reinject packets (unlike bypass solutions)

AF_XDP for flexible kernel bypass
Cooperate with use-cases needing fast raw frame access in userspace
No kernel reinject, instead choose destination before doing XDP_REDIRECT

Introduction to: XDP and BPF building blocks - Jesper Dangaard Brouer < >brouer@redhat.com
11

mailto:brouer@redhat.com

Simple view on how XDP gains speed
XDP speed gains come from

Avoiding memory allocations
no SKB allocations and no-init (only memset(0) of 4 cache-lines)

Bulk processing of frames
Very early access to frame (in driver code right after DMA sync)
Ability to skip (large parts) of kernel code

Introduction to: XDP and BPF building blocks - Jesper Dangaard Brouer < >brouer@redhat.com
12

mailto:brouer@redhat.com

Skipping code: Efficient optimisation
Encourage adding helpers instead of duplicating data in BPF maps

Skipping code: Imply skipping features provided by network stack
Gave users freedom to e.g. skip netfilter or route-lookup
But users have to re-implement features they actually needed

Sometimes cumbersome via BPF-maps
To avoid re-implementing features:

Evolve XDP via BPF helpers that can do lookups in kernel tables
Example of BPF-helpers available today for XDP:

FIB routing lookup
Socket lookup

Introduction to: XDP and BPF building blocks - Jesper Dangaard Brouer < >brouer@redhat.com
13

mailto:brouer@redhat.com

XDP actions and cooperation
What are the basic XDP building blocks you can use?

BPF programs return an action or verdict, for XDP there are 5:
XDP_ DROP, XDP_ PASS, XDP_ TX, XDP_ ABORTED, XDP_ REDIRECT

Ways to cooperate with network stack
Pop/push or modify headers: Change RX-handler kernel use

e.g. handle protocol unknown to running kernel
Can propagate 32 bytes of metadata from XDP stage to network stack

TC (cls_bpf) hook can use metadata, e.g. set SKB mark
XDP_REDIRECT map special, can choose where netstack “starts/begin”

CPUMAP redirect starts netstack on remote CPU
veth redirect starts inside container

Introduction to: XDP and BPF building blocks - Jesper Dangaard Brouer < >brouer@redhat.com
14

mailto:brouer@redhat.com

XDP redirect
ebplane very likely needs redirect feature

XDP redirect is an advanced feature
Requires some explanation to fully grasp why map variant is novel

Introduction to: XDP and BPF building blocks - Jesper Dangaard Brouer < >brouer@redhat.com
15

mailto:brouer@redhat.com

Basic: XDP action XDP_REDIRECT
XDP action code XDP_ REDIRECT

In basic form: Redirecting RAW frames out another net_device via ifindex
Egress driver: must implement ndo_xdp_xmit (and ndo_xdp_flush)

Need to be combined with BPF-helper calls, two variants
Different performance (single CPU core numbers, 10G Intel ixgbe)
Using helper: bpf_redirect = 7.5 Mpps
Using helper: bpf_redirect_map = 13.0 Mpps

What is going on?
Using redirect maps gives a HUGE performance boost, why!?

Introduction to: XDP and BPF building blocks - Jesper Dangaard Brouer < >brouer@redhat.com
16

mailto:brouer@redhat.com

Redirect using BPF-maps is novel
Why is it so brilliant to use BPF-maps for redirecting?

Named “redirect” as more generic, than “forwarding”
Tried to simplify changes needed in drivers, process per packet

First trick: Hide RX bulking from driver code via BPF-map
BPF-helper just sets map+index, driver then calls xdp_do_redirect() to read it
Map stores frame in temporary store (curr bulk per 16 frames)
End of driver NAPI poll “flush” - calls xdp_do_flush_map()
Extra performance benefit: from delaying expensive NIC tailptr/doorbell

Second trick: invent new types of redirects easy
Without changing any driver code! - Hopefully last XDP action code

Introduction to: XDP and BPF building blocks - Jesper Dangaard Brouer < >brouer@redhat.com
17

mailto:brouer@redhat.com

Redirect map types
Note: Using redirect maps require extra setup step in userspace

The “devmap”: BPF_MAP_TYPE_DEVMAP + BPF_MAP_TYPE_DEVMAP_HASH
Contains net_devices, userspace adds them using ifindex as map value

The “cpumap”: BPF_MAP_TYPE_CPUMAP
Allow redirecting RAW xdp frames to remote CPU - map-index is CPU#

SKB is created on remote CPU, and normal network stack “starts”
AF_XDP - “xskmap”: BPF_MAP_TYPE_XSKMAP

Allows redirect of RAW xdp frames into userspace - map-index usually RXq#
via new Address Family socket type: AF_XDP

Introduction to: XDP and BPF building blocks - Jesper Dangaard Brouer < >brouer@redhat.com
18

mailto:brouer@redhat.com

Introducing TC-BPF
ebplane: leverage eBPF technology for networking

Another option is using TC (Traffic Control) BPF-hooks
When targeting network layers L4-L7
L2-L3 are of course still possible

Introduction to: XDP and BPF building blocks - Jesper Dangaard Brouer < >brouer@redhat.com
19

mailto:brouer@redhat.com

What is TC-BPF?
The Linux TC layer has some BPF-hook points

In TC filter ’classify’ step: both ingress and egress
Scalable: runs outside TC-root lock (with preempt disabled + RCU read-side)

Operates on SKB context object (struct __sk_buff)
Pros: netstack collaboration easier, rich access to SKB features
Pros: easier L4, and (via sockmap) even L7 filtering in-kernel
Pros: more BPF-helpers available
Cons: Slower than XDP due to SKB alloc+init and no-bulking

(Traffic Control)

Introduction to: XDP and BPF building blocks - Jesper Dangaard Brouer < >brouer@redhat.com
20

https://docs.cilium.io/en/v1.6/bpf/#tc-traffic-control
mailto:brouer@redhat.com

TC-BPF actions or verdicts
TC-BPF progs are usually used in ’direct-action’ (da) mode

Similar to XDP, BPF-prog will directly return TC-action code ()
 for some of the available TC_ACT_* codes:

TC_ACT_ OK: pass SKB onwards (and set skb->tc_index)
TC_ACT_ UNSPEC: multi-prog case, continue to next BPF-prog
TC_ACT_ SHOT: drop SKB (kfree_skb) and inform caller NET_XMIT_DROP
TC_ACT_ STOLEN: drop SKB (consume_skb()) inform NET_XMIT_SUCCESS
TC_ACT_ REDIRECT: redirect packet to another net_device (bpf_redirect())

TC_ACT_*
BPF (cls_bpf) semantic

Introduction to: XDP and BPF building blocks - Jesper Dangaard Brouer < >brouer@redhat.com
21

https://elixir.bootlin.com/linux/v5.4-rc1/source/include/uapi/linux/pkt_cls.h#L32
https://docs.cilium.io/en/v1.6/bpf/#tc-traffic-control
mailto:brouer@redhat.com

TC-BPF access to packet-data memory
TC-BPF also (like XDP) has direct access to packet-data (read: fast)

But access limited to memory-linear part of packet-data
Thus, how much is accessible depends on how SKB were created
BPF-helper bpf_skb_pull_data() can be used, but very expensive

XDP also has direct access, but forces drivers to use specific memory model
Requires packet-data to be delivered “memory-linear” (in physical mem)

Introduction to: XDP and BPF building blocks - Jesper Dangaard Brouer < >brouer@redhat.com
22

mailto:brouer@redhat.com

Cooperation between XDP and TC-BPF
XDP and TC-BPF can both run and collaborate via:

Shared BPF maps as state or config
XDP metadata (in front of packet) available to TC-BPF (as already mentioned)
TC-BPF can function as fallback layer for XDP

XDP is lacking TX hook
For now, TC egress BPF hooks have solved these use-cases

Introduction to: XDP and BPF building blocks - Jesper Dangaard Brouer < >brouer@redhat.com
23

mailto:brouer@redhat.com

Design perspective
Higher level: Design perspective

from a BPF view point

Introduction to: XDP and BPF building blocks - Jesper Dangaard Brouer < >brouer@redhat.com
24

mailto:brouer@redhat.com

BPF view on: data-plane and control-plane
This covers both XDP and TC networking hooks

Data-plane: inside kernel, split into:
Kernel-core: Fabric in charge of moving packets quickly
In-kernel eBPF program:

Policy logic decide action (e.g. pass/drop/redirect)
Read/write access to packet

Control-plane: in userspace
Userspace loads eBPF program
Can control program via changing BPF maps
Everything goes through bpf system call

Introduction to: XDP and BPF building blocks - Jesper Dangaard Brouer < >brouer@redhat.com
25

mailto:brouer@redhat.com

BPF changing the kABI landscape
kABI = Kernel Application Binary Interface

Distros spend a lot of resources maintaining kABI compatibility
to satisfy out-of-tree kernel modules, calling kernel API / structs
e.g. contrail-vrouter hook into RX-handler (L2)

BPF offers a way out, with some limits due to security/safety:
Fully programmable hooks points (restricted-C)
Access sandboxed e.g. via context struct and BPF-helpers available
Possible policy actions limited by hook

Userspace “control-plane” API tied to userspace app (not kernel API)
In principle: BPF-instruction set and BPF-helpers are still kABI

tungsten kernel module

Introduction to: XDP and BPF building blocks - Jesper Dangaard Brouer < >brouer@redhat.com
26

https://tungsten.io/opencontrail-is-now-tungsten-fabric/
https://github.com/Juniper/contrail-vrouter/blob/master/linux/vr_host_interface.c#L1154
mailto:brouer@redhat.com

Designing with BPF for XDP+TC
Examples of designing with BPF

Introduction to: XDP and BPF building blocks - Jesper Dangaard Brouer < >brouer@redhat.com
27

mailto:brouer@redhat.com

Design protocol parser with BPF for XDP/TC
Background: XDP/TC metadata area placed in-front packet headers (32 Bytes). Works as communication channel between XDP-tail-
calls, and into TC-BPF hook

Split BPF-prog parser-step into standalone BPF-prog
Output is parse-info with header types and offsets
Parse-info is stored in XDP/TC metadata area (in-front packet headers)

Tail-call next BPF-prog, which has access to metadata area
Due to verifier, prog getting parse-info still need some bounds checking

Advantage: Parser prog can be replaced by hardware

Introduction to: XDP and BPF building blocks - Jesper Dangaard Brouer < >brouer@redhat.com
28

mailto:brouer@redhat.com

Design to load less-code
Generic netstack is also slow because

Needs to handle every known protocol (cannot fit in Instruction-Cache)
BPF gives ability to runtime change and load new code

The ’ebplane’ design should take advantage of this
Specifically for: Protocol parsing “module”

Don’t create huge BPF-prog that can parse everything
Idea: Domain Specific Language (maybe P4) for BPF-prog parsing step

Users describe protocols relevant for them, and parse-info struct
Result: smaller BPF-prog for parsing (less Instruction-Cache usage)
(Make sure this can also be compiled for HW targets)

Introduction to: XDP and BPF building blocks - Jesper Dangaard Brouer < >brouer@redhat.com
29

mailto:brouer@redhat.com

Containers
Relating XDP and TC-BPF to Containers

Introduction to: XDP and BPF building blocks - Jesper Dangaard Brouer < >brouer@redhat.com
30

mailto:brouer@redhat.com

TC-BPF for containers
Containers are in most cases better handled via TC-BPF

Have to allocate SKB anyway for delivery in container
Advanced use-case are possible with TC-BPF, like

Allows for L4-L7 policy enforcement for microservices
See : via +
Kernel level proxy service, also handling TLS/HTTPS via

The has already demonstrated this is doable
Even fully integrated with Kubernetes CNI

CloudFlare blogpost sockmap strparser
ktls+sockmap

Cilium project

Introduction to: XDP and BPF building blocks - Jesper Dangaard Brouer < >brouer@redhat.com
31

https://blog.cloudflare.com/sockmap-tcp-splicing-of-the-future/
https://lwn.net/Articles/731133/
https://www.kernel.org/doc/Documentation/networking/strparser.txt
https://github.com/torvalds/linux/commit/d04fb13c9fcdad8
https://cilium.io/
mailto:brouer@redhat.com

XDP for containers
In general: XDP redirect into container doesn’t make sense

veth driver support redirect, but will just create SKB later
why not just take the SKB alloc overhead up-front?

XDP-redirect into veth, only makes sense if re-redirecting
E.g. veth might not be final destination
Could call this service chaining containers

Imagine: Packaging L2-L3 appliances as containers
Like Suricata for inline Intrusion Prevention (IPS)
Virtual IP-router or firewall appliance

Introduction to: XDP and BPF building blocks - Jesper Dangaard Brouer < >brouer@redhat.com
32

mailto:brouer@redhat.com

Pitfalls and gaps
Explicitly covering known gaps

when leveraging eBPF technology for networking

Introduction to: XDP and BPF building blocks - Jesper Dangaard Brouer < >brouer@redhat.com
33

mailto:brouer@redhat.com

Gaps: IP-fragmentation not handled
Issue: (L3) IP-fragments doesn’t contain (L4) port numbers (e.g. TCP/UDP)

Challenge for UDP tunnels and L4 load-balancers
Neither XDP nor TC-BPF do IP-defrag

IP-defrag happens later at Transport Layer (L4)
As TC-BPF works with SKBs, would be possible to

Extend with BPF-helper to do the IP-defrag
Not enough demand to get this implemented

In practice: People configure MTU to avoid IP-fragmentation
Alternative: Fallback to network stack to handle IP-defrag

Introduction to: XDP and BPF building blocks - Jesper Dangaard Brouer < >brouer@redhat.com
34

mailto:brouer@redhat.com

Gaps: XDP broadcast and multicast
Cloning packets in XDP is not currently possible
XDP: Sending to multiple destination; not supported

Simple idea: Broadcast via redirect “send” to ALL port in devmap
Multicast via creating a devmap per multicast group

Alternative is to fallback
Let either: netstack or TC-BPF hook handle broadcast/multicast

Introduction to: XDP and BPF building blocks - Jesper Dangaard Brouer < >brouer@redhat.com
35

mailto:brouer@redhat.com

Gaps: XDP doesn’t handle multi-buffer packets
This limits XDP max packet size

XDP max MTU: 3520 bytes (page_size(4096) - headroom(256) - shinfo(320))
Multi-frame packets have several use cases

Jumbo-frames (larger than 3520 bytes)
TSO (TCP Segmentation Offload)
Header split, (L4) headers in first segment, (L7) payload in next

XDP proposal for multi-frame packets
Design idea/proposal in XDP-project: xdp-multi-buffer01-design.org

Introduction to: XDP and BPF building blocks - Jesper Dangaard Brouer < >brouer@redhat.com
36

https://github.com/xdp-project/xdp-project/blob/master/areas/core/xdp-multi-buffer01-design.org
mailto:brouer@redhat.com

Gaps: Getting XDP driver features
BPF core reject loading BPF-prog using features kernel don’t have

Features can be probed via cmdline: bpftool feature probe
XDP features also depends on driver code

If native-XDP can load, usually XDP_DROP + ABORTED + PASS works
XDP_REDIRECT not supported by all drivers, cannot detect this

At runtime packets dropped and kernel-log contains WARN_ONCE
Work in-progress covered at talk: LPC2019 XDP: the Distro View

Introduction to: XDP and BPF building blocks - Jesper Dangaard Brouer < >brouer@redhat.com
37

https://linuxplumbersconf.org/event/4/contributions/460/
http://people.netfilter.org/hawk/presentations/LinuxPlumbers2019/xdp-distro-view.pdf
mailto:brouer@redhat.com

Topic: Testing
How to test XDP and BPF programs?

Introduction to: XDP and BPF building blocks - Jesper Dangaard Brouer < >brouer@redhat.com
38

mailto:brouer@redhat.com

Testing available in kernel tree
Kernel have BPF code examples in directory

Red Hat QA do use these samples as testing tools for XDP
Kernel also have selftests in

These kind test might be better for ’ebplane’ project?

samples/bpf

tools/testing/selftests/bpf

Introduction to: XDP and BPF building blocks - Jesper Dangaard Brouer < >brouer@redhat.com
39

https://github.com/torvalds/linux/tree/master/samples/bpf
https://github.com/torvalds/linux/tree/master/tools/testing/selftests/bpf
mailto:brouer@redhat.com

How to test XDP
After veth got native-XDP support (v4.20), easiest test is

Writing scripts that setup veth namespaces for testing
Example: kernel/

Alternative use ()
Instead of attach: “run” loaded BPF-prog with bpf_prog_test_run()

Provide constructed packet data input + output buffer
Example: kernel/

Hint: and defined in

tools/testing/selftests/bpf/test_xdp_vlan.sh
bpf_prog_test_run() bpf-syscall BPF_PROG_TEST_RUN

tools/testing/selftests/bpf/prog_tests/xdp.c
pkt_v4 pkt_v6 tools/testing/selftests/bpf/test_progs.c

Introduction to: XDP and BPF building blocks - Jesper Dangaard Brouer < >brouer@redhat.com
40

https://github.com/torvalds/linux/blob/v5.4-rc3/tools/testing/selftests/bpf/test_xdp_vlan.sh
https://github.com/torvalds/linux/blob/v5.4-rc3/tools/lib/bpf/bpf.c#L519-L541
https://lore.kernel.org/netdev/20170331044543.4075183-1-ast@fb.com/
https://github.com/torvalds/linux/blob/v5.4-rc3/tools/testing/selftests/bpf/prog_tests/xdp.c
https://github.com/torvalds/linux/blob/v5.4-rc3/tools/testing/selftests/bpf/test_progs.c#L160
https://github.com/torvalds/linux/blob/v5.4-rc3/tools/testing/selftests/bpf/test_progs.c#L169
https://github.com/torvalds/linux/blob/v5.4-rc3/tools/testing/selftests/bpf/test_progs.c#L160-L175
mailto:brouer@redhat.com

XDP community
Status on XDP and BPF communities

Introduction to: XDP and BPF building blocks - Jesper Dangaard Brouer < >brouer@redhat.com
41

mailto:brouer@redhat.com

State of XDP community
XDP developer community:

Part of Linux kernel, under both and subsystems
BPF developers also coordinate under (LF-project)

 keeps track of work items
XDP users: Community and resources

Mailing list for newbies:
Getting started with XDP-tutorial: full build and testlab environment

Simply git clone and run make:
Cilium maintains official:

netdev bpf
IOvisor

XDP-project

xdp-newbies@vger.kernel.org

https://github.com/xdp-project/xdp-tutorial
BPF and XDP Reference Guide

Introduction to: XDP and BPF building blocks - Jesper Dangaard Brouer < >brouer@redhat.com
42

mailto:netdev@vger.kernel.org
mailto:bpf@vger.kernel.org
https://www.iovisor.org/
https://github.com/xdp-project/xdp-project
mailto:xdp-newbies@vger.kernel.org
https://github.com/xdp-project/xdp-tutorial
https://docs.cilium.io/en/v1.6/bpf/
mailto:brouer@redhat.com

End: Summary
Kernel now have eBPF programmable network fast-path

that can now compete with kernel-bypass speeds
FOSS community needs projects like ’ebplane’

to build projects and products with this technology
Hopefully this presentation gave enough information

in form of building blocks and known limitations
XDP-project coordination:

https://github.com/xdp-project/xdp-project

Introduction to: XDP and BPF building blocks - Jesper Dangaard Brouer < >brouer@redhat.com
43

https://github.com/xdp-project/xdp-project
mailto:brouer@redhat.com

Bonus slides

Introduction to: XDP and BPF building blocks - Jesper Dangaard Brouer < >brouer@redhat.com
44

mailto:brouer@redhat.com

Topic: XDP redirect into Guest-VM
Makes sense: Using XDP for Guest-VM redirect

Allow skipping overhead of Host-OS network stack

Introduction to: XDP and BPF building blocks - Jesper Dangaard Brouer < >brouer@redhat.com
45

mailto:brouer@redhat.com

