\

" Introduction to: XDP and BPF
building blocks

Jesper Dangaard Brouer

Kernel Developer
Red Hat

ebplane hosted by Juniper
USA, Sunnyvale, Oct 2019

Q Red Hat Introduction to: XDP and BPF building blocks

The ‘ebplane’ project
The ebplane project: early startup phase

e |nitial presentation title: "Universal Data
m Shows interest in leveraging eBPF tec
o . use-cases and networ

Plane Proposal”
nnology for networking

<-layers to target

This presentation: eBPF technology level setting

e Building blocks and their limitations

e Designing with eBPF requires slightly different thinking...

m essential for success of this project

Red Hat Introduction to: XDP and BPF building blocks - Jesper Dangaard Brouer <brouer@redhat.com>

https://docs.google.com/presentation/d/1JHrl8PlLyVRSMvtF8OUa3BW3GcRf4a3Kx2CPw2g7tJg/edit?ts=5d542a23#slide=id.p
mailto:brouer@redhat.com

Different design thinking: High level overview

: Designing new data plane from scratch
Key insight #1: Modify behaviour of existing system (Linux kernel)

e Viainjecting code snippets at different hooks
e BPF code snippets are event-based and by default stateless
e Obtain state and change runtime behaviour via shared BPF-maps

Key insight #2: Only load code when actually needed

e The fastest code is code that doesn't run (or even gets loaded)
e Design system to only load code relevant to user configured use-case

e E.g. don'timplement generic parser to handle every known protocol
m instead create parser specific to user’'s need/config

Red Hat Introduction to: XDP and BPF building blocks - Jesper Dangaard Brouer <brouer@redhat.com>

mailto:brouer@redhat.com

Basic introduction and understanding of eBPF

Technical: Getting up to speed on eBPF technology
Basic introduction and understanding of BPF

e eBPF bytecode

e Compiling restricted-C to eBPF
m compiler stores this in ELF-format
m which can be loaded into the Linux kernel

Red Hat Introduction to: XDP and BPF building blocks

- Jesper Dangaard Brouer <brouer@redhat.com>

mailto:brouer@redhat.com

eBPF bytecode and kernel hooks

The eBPF bytecode is:

e Generic Instruction Set Architecture (ISA) with C calling convention
m Read: the eBPF assembly language

e Designed to runin the Linux kernel
m |tis

= |t is asandbox technology; BPF verfier ensures code safety

m Kernel provides eBPF runtime environment, via BPF helper calls

Different Linux kernel hooks run eBPF bytecode, event triggered

e Two hooks of special interest: XDP and TC-BPF
e Many more eBPF hooks (tracepoints, all function calls via kprobe)

Red Hat Introduction to: XDP and BPF building blocks - Jesper Dangaard Brouer <brouer@redhat.com>

mailto:brouer@redhat.com

Compiling restricted-C to eBPF into ELF

LLVM compiler has an eBPF backend (to by hand)

e Write Restricted C - some limits imposed by sandbox BPF-verifier
Compiler produces a standard ELF “executable” file

e Cannot execute this file directly, as the eBPF runtime is inside the kernel
e Need an ELF loader that can:

m Extract the eBPF bytecode and eBPF maps
= Do ELF relocation of eBPF map references in bytecode

m Create/load eBPF maps and bytecode into kernel
e Attaching to hook is a separate step

Red Hat Introduction to: XDP and BPF building blocks - Jesper Dangaard Brouer <brouer@redhat.com>

mailto:brouer@redhat.com

Recommend using libbpf

Recommend using libbpf as the ELF loader for eBPF

e |ibbpf is part of Linux kernel tree

e Facebook fortunately exports this to https://github.com/libbpf
m XDP-tutorial git repo, uses libbpf as git-submodule

Please userspace apps: Everybody should use this library

o several loaders exists

e Worst case is iproute2 has its own
m causes incompatible ELF object, if using eBPF maps
= (plan to converting iproute? to use libbpf)

Red Hat Introduction to: XDP and BPF building blocks - Jesper Dangaard Brouer <brouer@redhat.com>

https://github.com/libbpf
https://github.com/libbpf/libbpf
mailto:brouer@redhat.com

eBPF concepts: context, maps and helpers

Each eBPF runtime event hook gets a pointer to a context struct

e BPF bytecode has access to context (read/write limited)
m verifier may adjust the bytecode for safety

The BPF program itself is stateless

e eBPF maps can be used to create state and “config”
e Maps are basically key = value construct

BPF helpers are used for

e Calling kernel functions, to obtain info/state from kernel

Red Hat Introduction to: XDP and BPF building blocks - Jesper Dangaard Brouer <brouer@redhat.com>

mailto:brouer@redhat.com

Introducing XDP

ebplane: how to leverage eBPF technology for networking

e One option is XDP (eXpress Data Path)
» When targeting network layers L2-L3
m | 4 use-cases come with some caveats

Red Hat Introduction to: XDP and BPF building blocks - Jesper Dangaard Brouer <brouer@redhat.com>

mailto:brouer@redhat.com

What is XDP?

XDP (eXpress Data Path) is a Linux in-kernel fast-path

e New programmable layer in-front of traditional network stack
= Read, modify, drop, redirect or pass

e For L2-L3 use-cases: seeing x10 performance improvements!
m Similar speeds as DPDK

e Can accelerate in-kernel L2-L3 use-cases (e.g. forwarding)
What is AF_XDP? (the Address Family XDP socket)

e Hybrid kernel-bypass facility via XDP_REDIRECT filter
e Deliversraw L2 frames into userspace (in SPSC queue)

Red Hat Introduction to: XDP and BPF building blocks - Jesper Dangaard Brouer <brouer@redhat.com>

10

mailto:brouer@redhat.com

What makes XDP different and better?

Not bypass, but in-kernel fast-path

The killer feature of XDP is integration with Linux kernel,

_everages existing kernel infrastructure, eco-system and market position
Programmable flexibility via eBPF sandboxing (kernel infra)

-lexible sharing of NIC resources between Linux and XDP

Kernel maintains NIC drivers, easy to deploy everywhere

Cooperation with netstack via eBPF-helpers and fallback-handling

No need to reinject packets (unlike bypass solutions)

AF_XDP for flexible kernel bypass

Cooperate with use-cases needing fast raw frame access in userspace
No kernel reinject, instead choose destination before doing XDP_REDIRECT

Red Hat Introduction to: XDP and BPF building blocks - Jesper Dangaard Brouer <brouer@redhat.com>

1

mailto:brouer@redhat.com

Simple view on how XDP gains speed

XDP speed gains come from

e Avoiding memory allocations
= no SKB allocations and no-init (only memset (0) of 4 cache-lines)
e Bulk processing of frames

e Very early access to frame (in driver code right after DMA sync)
e Ability to (large parts) of kernel

Red Hat Introduction to: XDP and BPF building blocks - Jesper Dangaard Brouer <brouer@redhat.com>

12

mailto:brouer@redhat.com

Skipping code: Efficient optimisation

Encourage adding helpers instead of duplicating data in BPF maps

Skipping code: Imply skipping features provided by network stack

e Gave users freedom to e.g. skip netfilter or route-lookup

e But users have to re-implement features they actually needed
m Sometimes cumbersome via BPF-maps

To avoid re-implementing features:

e Evolve XDP via BPF helpers that can do lookups in kernel tables

e Example of BPF-helpers available today for XDP:
® FIB routing lookup

m Socket lookup

Red Hat Introduction to: XDP and BPF building blocks - Jesper Dangaard Brouer <brouer@redhat.com>

13

mailto:brouer@redhat.com

XDP actions and cooperation

What are the basic XDP building blocks you can use?

BPF programs return an action or verdict, for XDP there are 5:

e XDP_DROP, XDP_PASS, XDP_TX, XDP_ABORTED, XDP_REDIRECT
Ways to cooperate with network stack

e Pop/push or modify headers: Change RX-handler kernel use
m e.g. handle protocol unknown to running kernel

e Can propagate 32 bytes of metadata from XDP stage to network stack
m TC (cls_bpf) hook can use metadata, e.g. set SKB mark

e XDP_REDIRECT map special, can choose where netstack “starts/begin”
s CPUMAP redirect starts netstack on remote CPU
m veth redirect starts inside container

Red Hat Introduction to: XDP and BPF building blocks - Jesper Dangaard Brouer <brouer@redhat.com>

14

mailto:brouer@redhat.com

XDP redirect

ebplane very likely needs redirect feature

e XDP redirect is an advanced feature
m Requires some explanation to fully grasp why map variant is novel

Red Hat Introduction to: XDP and BPF building blocks - Jesper Dangaard Brouer <brouer@redhat.com>

15

mailto:brouer@redhat.com

Basic: XDP action XDP_REDIRECT

XDP action code XDP_ REDIRECT

e |n basic form: Redirecting RAW frames out another net_device via ifindex
e Egress driver: must implement ndo_xdp_xmit (and ndo_xdp_flush)

Need to be combined with BPF-helper calls, two variants

e Different performance (single CPU core numbers, 10G Intel ixgbe)
e Using helper: bpf_redirect = 7.5 Mpps
e Using helper: bpf_redirect_map =13.0 Mpps

What is going on?

e Using redirect maps gives a HUGE performance boost, why!?

Red Hat Introduction to: XDP and BPF building blocks - Jesper Dangaard Brouer <brouer@redhat.com>

[S

mailto:brouer@redhat.com

Redirect using BPF-maps is novel

Why is it so brilliant to use BPF-maps for redirecting?

Named “redirect” as more generic, than “forwarding”
e Tried to simplify changes needed in drivers, process per packet
First trick: Hide RX bulking from driver code via BPF-map

e BPF-helper just sets map+index, driver then calls xdp_do_redirect() to read it
e Map stores frame in temporary store (curr bulk per 16 frames)

e End of driver NAPI poll “flush” - calls xdp_do_flush_map()

e Extra performance benefit: from delaying expensive NIC tailptr/doorbell

Second trick: invent new types of redirects easy

e Without changing any driver code! - Hopefully last XDP action code

Red Hat Introduction to: XDP and BPF building blocks - Jesper Dangaard Brouer <brouer@redhat.com>

mailto:brouer@redhat.com

Redirect map types

Note: Using redirect maps require extra setup step in userspace

The "devmap”: BPF_MAP_TYPE_DEVMAP + BPF_MAP_TYPE_DEVMAP_HASH

e Contains net_devices, userspace adds them using ifindex as map value

The “"cpumap”: BPF_MAP_TYPE_CPUMAP

e Allow redirecting RAW xdp frames to remote
m SKB is created on remote CPU, and norma

AF_XDP - "xskmap”: BPF_MAP_TYPE_XSKMA
e Allows redirect of RAW xdp frames into users

CPU - map-index is CPU#
| network stack “starts”

D

nace - map-index usually RXg#

® via new Address Family socket type: AF_XDP

Red Hat Introduction to: XDP and BPF building blocks - Jesper Dangaard Brouer <brouer@redhat.com>

18

mailto:brouer@redhat.com

Introducing TC-BPF

ebplane: leverage eBPF technology for networking

e Another optionis using TC (Traffic Control) BPF-hooks
» When targeting network layers L4-L7
m | 2-L.3 are of course still possible

Red Hat Introduction to: XDP and BPF building blocks - Jesper Dangaard Brouer <brouer@redhat.com>

19

mailto:brouer@redhat.com

Whatis TC-BPF?

The Linux TC (Traffic Control) layer has some BPF-hook points

e In TC filter ‘classify’ step: both ingress and egress
e Scalable: runs outside TC-root lock (with preempt disabled + RCU read-side)

Operates on SKB context object (struct __sk_buff)

e Pros: netstack collaboration easier, rich access to SKB features
e Pros: easier L4, and (via sockmap) even L7 filtering in-kernel

e Pros: more BPF-helpers available

e Cons: Slower than XDP due to SKB alloc+init and no-bulking

Red Hat Introduction to: XDP and BPF building blocks - Jesper Dangaard Brouer <brouer@redhat.com>

https://docs.cilium.io/en/v1.6/bpf/#tc-traffic-control
mailto:brouer@redhat.com

TC-BPF actions or verdicts

TC-BPF progs are usually used in ‘direct-action’ (da) mode
e Similar to XDP, BPF-prog will directly return TC-action code (TC_ACT_*)
BPF (cls_bpf) semantic for some of the available TC_ACT_* codes:

o TC_ACT_ OK: pass SKB onwards (and set skb->tc_index)
e TC_ACT_UNSPEC: multi-prog case, continue to next BPF-prog

e TC_ACT_SHOQOT: drop SKB (kfree_skb) and inform caller NET_XMIT_DROP
e TC_ACT_STOLEN: drop SKB (consume_skb()) inform NET_XMIT_SUCCESS

e TC_ACT_REDIRECT: redirect packet to another net_device (bpf_redirect())

Red Hat Introduction to: XDP and BPF building blocks - Jesper Dangaard Brouer <brouer@redhat.com> .

https://elixir.bootlin.com/linux/v5.4-rc1/source/include/uapi/linux/pkt_cls.h#L32
https://docs.cilium.io/en/v1.6/bpf/#tc-traffic-control
mailto:brouer@redhat.com

TC-BPF access to packet-data memory
TC-BPF also (like XDP) has direct access to packet-data (read: fast)

e But access limited to memory-linear
e Thus, how much is accessible depenc

part of packet-data
s on how SKB were created

e BPF-helper bpf_skb_pull_data() can

be used, but very expensive

XDP also has direct access, but forces drivers to use specific memory model

e Requires packet-data to be delivered

"memory-linear” (in physical mem)

Red Hat Introduction to: XDP and BPF building blocks - Jesper Dangaard Brouer <brouer@redhat.com>

22

mailto:brouer@redhat.com

Cooperation between XDP and TC-BPF

XDP and TC-BPF can both run and collaborate via:

e Shared BPF maps as state or config
e XDP metadata (in front of packet) available to TC-BPF (as already mentioned)
e TC-BPF can function as fallback layer for XDP

XDP is lacking TX hook

e For now, TC egress BPF hooks have solved these use-cases

Red Hat Introduction to: XDP and BPF building blocks - Jesper Dangaard Brouer <brouer@redhat.com>

23

mailto:brouer@redhat.com

Design perspective
Higher level: Design perspective

e from a BPF view point

Red Hat Introduction to: XDP and BPF building blocks

- Jesper Dangaard Brouer <brouer@redhat.com>

24

mailto:brouer@redhat.com

BPF view on: data-plane and control-plane

This covers both XDP and TC networking hooks

Data-plane: inside kernel, split into:

e Kernel-core: Fabric in charge of moving packets quickly
¢ In-kernel eBPF program:

m Policy logic decide action (e.g. pass/drop/redirect)
s Read/write access to packet

Control-plane: in userspace

e Userspace loads eBPF program

e Can control program via changing BPF maps
e Everything goes through bpf system call

Red Hat Introduction to: XDP and BPF building blocks

- Jesper Dangaard Brouer <brouer@redhat.com>

25

mailto:brouer@redhat.com

BPF changing the kABI landscape

kABI = Kernel Application Binary Interface

Distros spend resources maintaining kABI compatibility

e to satisfy out-of-tree kernel modules, calling kernel APl / structs
e e.g.tungsten contrail-vrouter kernel module hook into RX-handler (L2)

BPF offers a way out, with some limits due to security/safety:

e Fully programmable hooks points (restricted-C)
e Access sandboxed e.g. via context struct and BPF-helpers available
e Possible policy actions limited by hook

Userspace “control-plane” API tied to userspace app (not kernel API)

In principle: BPF-instruction set and BPF-helpers are still KABI

Red Hat Introduction to: XDP and BPF building blocks - Jesper Dangaard Brouer <brouer@redhat.com>

26

https://tungsten.io/opencontrail-is-now-tungsten-fabric/
https://github.com/Juniper/contrail-vrouter/blob/master/linux/vr_host_interface.c#L1154
mailto:brouer@redhat.com

Designing with BPF for XDP+TC

Examples of designing with BPF

Red Hat Introduction to: XDP and BPF building blocks - Jesper Dangaard Brouer <brouer@redhat.com>

27

mailto:brouer@redhat.com

Design protocol parser with BPF for XDP/TC

Background: XDP/TC metadata area placed in-front packet headers (32 Bytes). Works as communication channel between XDP-tail-
calls, and into TC-BPF hook

Split BPF-prog parser-step into standalone BPF-prog

e Output is parse-info with header types and offsets
e Parse-info is stored in XDP/TC metadata area (in-front packet headers)

Tail-call next BPF-prog, which has access to metadata area

e Due to verifier, prog getting parse-info still need some bounds checking

Advantage: Parser prog can be replaced by hardware

Red Hat Introduction to: XDP and BPF building blocks - Jesper Dangaard Brouer <brouer@redhat.com>
28

mailto:brouer@redhat.com

Design to load less-code

Generic netstack is also slow because

e Needs to handle every known protocol (cannot fit in Instruction-Cache)
BPF gives ability to runtime change and load new code

e The ‘ebplane’ design should take advantage of this

Specifically for: Protocol parsing “module”

e Don't create huge BPF-prog that can parse everything
e |dea: Domain Specific Language (maybe P4) for BPF-prog parsing step
m Users describe protocols relevant for them, and parse-info struct

m Result: smaller BPF-prog for parsing (less Instruction-Cache usage)
= (Make sure this can also be compiled for HW targets)

Red Hat Introduction to: XDP and BPF building blocks - Jesper Dangaard Brouer <brouer@redhat.com>

29

mailto:brouer@redhat.com

Containers
Relating XDP and TC-BPF to Containers

Red Hat

Introduction to: XDP and BPF building blocks

- Jesper Dangaard Brouer <brouer@redhat.com>

30

mailto:brouer@redhat.com

TC-BPF for containers

Containers are in most cases better handled via TC-BPF
e Have to allocate SKB anyway for delivery in container
Advanced use-case are possible with TC-BPF, like

e Allows for L4-L7 policy enforcement for microservices
¢ See CloudFlare blogpost: via sockmap + strparser
e Kernel level proxy service, also handling TLS/HTTPS via ktls+tsockmap

The Cilium project has already demonstrated this is doable

e Even fully integrated with Kubernetes CNI

Red Hat Introduction to: XDP and BPF building blocks - Jesper Dangaard Brouer <brouer@redhat.com>

31

https://blog.cloudflare.com/sockmap-tcp-splicing-of-the-future/
https://lwn.net/Articles/731133/
https://www.kernel.org/doc/Documentation/networking/strparser.txt
https://github.com/torvalds/linux/commit/d04fb13c9fcdad8
https://cilium.io/
mailto:brouer@redhat.com

XDP for containers

In general: XDP redirect into container doesn’'t make sense

e veth driver support redirect, but will just create SKB later
= why not just take the SKB alloc overhead up-front?

XDP-redirect into veth, only makes sense if re-redirecting

e E.g. veth might not be final destination
e Could call this service chaining containers

Imagine: Packaging L2-L3 appliances as containers

e | ike Suricata for inline Intrusion Prevention (IPS)
e Virtual IP-router or firewall appliance

Red Hat Introduction to: XDP and BPF building blocks - Jesper Dangaard Brouer <brouer@redhat.com>

32

mailto:brouer@redhat.com

Pitfalls and gaps

Explicitly covering known gaps

e when leveraging eBPF technology for networking

Red Hat

Introduction to: XDP and BPF building blocks

- Jesper Dangaard Brouer <brouer@redhat.com>

33

mailto:brouer@redhat.com

Gaps: IP-fragmentation not handled

Issue: (L3) IP-fragments doesn’t contain (L4) port numbers (e.g. TCP/UDP)
e Challenge for UDP tunnels and L4 load-balancers

Neither XDP nor TC-BPF do IP-defrag

e |P-defrag happens later at Transport Layer (L4)

As TC-BPF works with SKBs, would be possible to

e Extend with BPF-helper to do the IP-defrag
= Not enough demand to get this implemented

In practice: People configure MTU to avoid IP-fragmentation

Alternative: Fallback to network stack to handle IP-defrag

Red Hat Introduction to: XDP and BPF building blocks - Jesper Dangaard Brouer <brouer@redhat.com>
34

mailto:brouer@redhat.com

Gaps: XDP broadcast and multicast

Cloning packets in XDP is not currently possible
XDP: Sending to multiple destination; not supported

e Simple idea: Broadcast via redirect "send” to ALL port in devmap
e Multicast via creating a devmap per multicast group

Alternative is to fallback
e | et either: netstack or TC-BPF hook handle broadcast/multicast

Red Hat Introduction to: XDP and BPF building blocks - Jesper Dangaard Brouer <brouer@redhat.com>

35

mailto:brouer@redhat.com

Gaps: XDP doesn’t handle multi-buffer packets

This limits XDP max packet size

e XDP max MTU: 3520 bytes (page_size(4096) - headroom(256) - shinfo(320))
Multi-frame packets have several use cases

e Jumbo-frames (larger than 3520 bytes)
e TSO (TCP Segmentation Offload)

e Header split, (L4) headers in first segment, (L/) payload in next
XDP proposal for multi-frame packets

e Design idea/proposal in XDP-project: xdp-multi-bufferOl-design.org

Red Hat Introduction to: XDP and BPF building blocks - Jesper Dangaard Brouer <brouer@redhat.com>

36

https://github.com/xdp-project/xdp-project/blob/master/areas/core/xdp-multi-buffer01-design.org
mailto:brouer@redhat.com

Gaps: Getting XDP driver features

BPF core reject loading BPF-prog using features kernel don't have
e Features can be probed via cmdline: bpftool feature probe

XDP features also depends on driver code

e |f native-XDP can load, usually XDP_DROP + ABORTED + PASS works
o XDP_REDIRECT not supported by all drivers, cannot detect this
m At runtime packets dropped and kernel-log contains WARN_ONCE

Work in-progress covered at LPC2019 talk: XDP: the Distro View

Red Hat Introduction to: XDP and BPF building blocks - Jesper Dangaard Brouer <brouer@redhat.com>

37

https://linuxplumbersconf.org/event/4/contributions/460/
http://people.netfilter.org/hawk/presentations/LinuxPlumbers2019/xdp-distro-view.pdf
mailto:brouer@redhat.com

Topic: Testing

How to test XDP and BPF programs?

Red Hat

Introduction to: XDP and BPF building blocks

- Jesper Dangaard Brouer <brouer@redhat.com>

38

mailto:brouer@redhat.com

Testing available in kernel tree

Kernel have BPF code examples in directory samples/bpf

e Red Hat QA do use these samples as testing tools for XDP
Kernel also have selftests in tools/testing/selftests/bpf

e These kind test might be better for ‘ebplane’ project?

Red Hat Introduction to: XDP and BPF building blocks

- Jesper Dangaard Brouer <brouer@redhat.com>

39

https://github.com/torvalds/linux/tree/master/samples/bpf
https://github.com/torvalds/linux/tree/master/tools/testing/selftests/bpf
mailto:brouer@redhat.com

How to test XDP

After veth got native-XDP support (v4.20), easiest test is

e Writing scripts that setup veth namespaces for testing
e Example: kernel/tools/testing/selftests/bpf/test_xdp_vlan.sh

Alternative use bpf_prog_test_run() (bpf-syscall BPF_PROG_TEST_RUN)

e |nstead of attach: “run” loaded BPF-prog with bpf_prog_test_run()
= Provide constructed packet data input + output buffer
e Example: kernel/tools/testing/selftests/bpf/prog_tests/xdp.c
m Hint: pkt_v4 and pkt_v6 defined in tools/testing/selftests/bpf/test_progs.c

Red Hat Introduction to: XDP and BPF building blocks - Jesper Dangaard Brouer <brouer@redhat.com>

40

https://github.com/torvalds/linux/blob/v5.4-rc3/tools/testing/selftests/bpf/test_xdp_vlan.sh
https://github.com/torvalds/linux/blob/v5.4-rc3/tools/lib/bpf/bpf.c#L519-L541
https://lore.kernel.org/netdev/20170331044543.4075183-1-ast@fb.com/
https://github.com/torvalds/linux/blob/v5.4-rc3/tools/testing/selftests/bpf/prog_tests/xdp.c
https://github.com/torvalds/linux/blob/v5.4-rc3/tools/testing/selftests/bpf/test_progs.c#L160
https://github.com/torvalds/linux/blob/v5.4-rc3/tools/testing/selftests/bpf/test_progs.c#L169
https://github.com/torvalds/linux/blob/v5.4-rc3/tools/testing/selftests/bpf/test_progs.c#L160-L175
mailto:brouer@redhat.com

XDP community

Status on XDP and BPF communities

Red Hat

Introduction to: XDP and BPF building blocks

- Jesper Dangaard Brouer <brouer@redhat.com>

41

mailto:brouer@redhat.com

State of XDP community

XDP developer community:

e Part of Linux kernel, under both netdev and bpf subsystems
e BPF developers also coordinate under |Ovisor (LF-project)
e XDP-project keeps track of work items

XDP users: Community and resources

e Mailing list for newbies: xdp-newbies@vger.kernel.org
e Getting started with XDP-tutorial: full build and testlab environment

m Simply git clone and run make: https://github.com/xdp-project/xdp-tutorial
e Cilium maintains official: BPF and XDP Reference Guide

Red Hat Introduction to: XDP and BPF building blocks - Jesper Dangaard Brouer <brouer@redhat.com>

42

mailto:netdev@vger.kernel.org
mailto:bpf@vger.kernel.org
https://www.iovisor.org/
https://github.com/xdp-project/xdp-project
mailto:xdp-newbies@vger.kernel.org
https://github.com/xdp-project/xdp-tutorial
https://docs.cilium.io/en/v1.6/bpf/
mailto:brouer@redhat.com

End: Summary

Kernel now have eBPF programmable network fast-path
e that can now compete with kernel-bypass speeds
FOSS community needs projects like ‘ebplane’

e to build projects and products with this technology
Hopefully this presentation gave enough information

e in form of building blocks and known limitations

XDP-project coordination:

e https://github.com/xdp-project/xdp-project

Red Hat Introduction to: XDP and BPF building blocks - Jesper Dangaard Brouer <brouer@redhat.com>

43

https://github.com/xdp-project/xdp-project
mailto:brouer@redhat.com

Bonus slides

Red Hat

Introduction to: XDP and BPF building blocks

Jesper Dangaard Brouer <brouer@redhat.com>

44

mailto:brouer@redhat.com

Topic: XDP redirect into Guest-VM

Makes sense: Using XDP for Guest-VM redirect
e Allow skipping overhead of Host-OS network stack

Red Hat Introduction to: XDP and BPF building blocks - Jesper Dangaard Brouer <brouer@redhat.com>

45

mailto:brouer@redhat.com

