
Netfilter:
Making large iptables rulesets scale

Netfilter:
Making large iptables rulesets scale

by
Jesper Dangaard Brouer <jdb@comx.dk>

Master of Computer Science
ComX Networks A/S

OpenSourceDays 2008
d.4/10-2008

ComX Networks A/S

 2/29Netfilter: Making large iptables rulesets scale

Who am IWho am I

Name: Jesper Dangaard Brouer

Edu: Computer Science for Uni. Copenhagen

Focus on Network, Dist. sys and OS

Linux user since 1996, professional since 1998

Sysadm, Developer, Embedded

OpenSource projects

Author of

ADSL-optmizer

CPAN IPTables::libiptc

Patches accepted into

Kernel, iproute2 and iptables

 3/29Netfilter: Making large iptables rulesets scale

Presentation overviewPresentation overview

You will learn:

About a Danish ISPs extreme use of iptables

How to avoid bad routing performance

Traffic categorization is performance key

How iptables rulesets are processed in userspace

How to use userspace processing as an advantage

Improvements to make iptables scale

 4/29Netfilter: Making large iptables rulesets scale

ComX Networks A/SComX Networks A/S

I work for ComX Networks A/S

Danish Fiber Broadband Provider

variety of services (TV, IPTV, VoIP, Internet)

This talk is about our Internet product

Netfilter is a core component:

Basic Access Control

Bandwidth Control

Personal Firewall

 5/29Netfilter: Making large iptables rulesets scale

Physical surroundingsPhysical surroundings

ComX delivers fiber based solutions

Our primary customers are apartment buildings

but with an end-user relationship

Ring based network topology with POPs (Point Of Presence)

POPs have fiber strings to apartment buildings

CPE box in apartment performs

service separation into VLANs

 6/29Netfilter: Making large iptables rulesets scale

The Linux boxThe Linux box

The iptables box(es), this talk is all about

placed at each POP (near the core routers)

high-end server PC, with only two netcards

Internet traffic:

from several apartment buildings,

layer2 terminated via VLANs on one netcard,

routed out the other.

Cost efficient

but needs to scale to a large number of customers

goal is to scale to 5000 customers per machine

 7/29Netfilter: Making large iptables rulesets scale

Issues and limitationsIssues and limitations

First generation solution was in production.

business grew and customers where added;

several scalability issues arose

The two primary were:

Routing performance reduced (20 kpps)

Rule changes where slow

 I was hired to rethink the system

 8/29Netfilter: Making large iptables rulesets scale

OverviewOverview

Presentation split into two subjects

1) Routing performance

Solved using effective traffic categorization

2) Slow rule changes

Solved by modifying iptables to use binary search

 9/29Netfilter: Making large iptables rulesets scale

Issue: Bad route performanceIssue: Bad route performance

The first generation solution,

naive approach: long list of rules in a single chain

Routing performance degradation problem:

It all comes down to traffic categorizing

binding packets to a customer

where a customer can have several IP-addresses

Need to find a scalable categorization mechanism

 10/29Netfilter: Making large iptables rulesets scale

Existing solutionsExisting solutions

Looking for existing solutions

for solving the categorization task

Ended up using standard iptables chains

nf-hipac, universal solution,

Optimize ruleset for memory lookups per packet

Did not work with current kernels

ipset

Sets of IP, can be matched, given action

 11/29Netfilter: Making large iptables rulesets scale

The categorization tasksThe categorization tasks

 With the kind of categorization needed,
why did I ended up using standard iptables chains?

Access Control

simple open/close solution

could use ipset

Bandwidth Control

requires an individual shaper per customer

cannot use ipset

Personal firewall

most complicated: individual set of rules per customer

cannot use ipset

 12/29Netfilter: Making large iptables rulesets scale

Solution: SubnetSkeletonSolution: SubnetSkeleton

The solution was to build a search tree;

for IP-addresses, based on subnet partitioning,

using standard iptables chains and jump rules.

 13/29Netfilter: Making large iptables rulesets scale

SubnetSkeleton: AlgorithmSubnetSkeleton: Algorithm

Algorithm, predefined partitioning of IP space;

based on a user-defined list of CIDR prefixes

Depth of tree, determined by CIDR list length.

Max number of children, bits between CIDRs (2n)

Creates tree by bit masking the IP with the CIDR list

Example:

CIDR list = [/8, /16, /24]

IP: 10.1.2.3

10.1.2.3

10.0.0.0/8

10.1.2.0/24

10.1.0.0/16

 14/29Netfilter: Making large iptables rulesets scale

SubnetSkeleton: CIDR partitioningSubnetSkeleton: CIDR partitioning

Choosing CIDR list is essential.

Base it on IP-space that needs to be covered.

E.g. our IP-address space, limited to AS number

AS31661 = 156.672 IPs.

Largest subnet we announce is a /16.

CIDR list: [8, 18, 20, 22, 24, 26, 28]

/8 needed as our subnets vary on first byte,

"0-8", 28=256 children, but only 4 different subnets

Between "8-18": 210 = Max 1024 children.

But know /16 (22=4)

Between, rest 2 bits, thus max 4 children in nodes.

Last, "28-32": (24=16) max 16 direct IP matches.

 15/29Netfilter: Making large iptables rulesets scale

SubnetSkeleton: iptablesSubnetSkeleton: iptables
 Expressing the tree using iptables:

Each node in the tree is an iptables chain.

child pointers in a node are jump rules.

A leaf has IP specific jump rules to a user-defined chain

leafs are allowed to jump to the same user-defined chain

children (jump rules) are processed linearly, in chain

 16/29Netfilter: Making large iptables rulesets scale

Perl - IPTables::SubnetSkeletonPerl - IPTables::SubnetSkeleton

#!/usr/bin/perl
use IPTables::SubnetSkeleton;

my @CIDR = (8, 16, 24); # prefix list

my $name = "bw"; # Shortname for bandwidth
my $table = "mangle"; # Use “mangle” table

my $subnet_src = IPTables::SubnetSkeleton::new("$name", "src", $table, @CIDR);

Connect subnet skeleton to build-in chain "FORWARD"
$subnet_src->connect_to("FORWARD");

Insert IP's to match into the tree
$subnet_src->insert_element("10.2.11.33", "userchain1");
$subnet_src->insert_element("10.2.10.66", "userchain2");
$subnet_src->insert_element("10.1.2.42", "userchain3");
$subnet_src->insert_element("10.1.3.123", "userchain3");

Remember to commit the ruleset to kernel
$subnet_src->iptables_commit();

 17/29Netfilter: Making large iptables rulesets scale

Full routing performance achievedFull routing performance achieved

Full route performance achieved

When using SubnetSkeleton

HTB shaper seems to scale well

Good perf boost in 2.6.25,
Better conntrack locking, faster conntrack hash func

reduced cpu load to half, Thanks Patrick McHardy!

Parameter tuning

Increase route cache

Increase conntrack entries
remember conntrack hash bucket size (/sys/module/nf_conntrack/parameters/hashsize)

Adjust arp/neighbor size and thresholds

Back to subject:
Slow ruleset changes

 18/29Netfilter: Making large iptables rulesets scale

Issue: iptables command slowIssue: iptables command slow

The next scalability issue: Rule changes slow!

Rebuilding the entire ruleset could take hours

Discover how iptables works:

Entire ruleset copied to userspace

After possibly multiple changes, copied back to kernel

Performed by a IPTables Cache library "libiptc"

iptables.c is a command line parser using this library

Profiling: identified first scalability issue

Initial ruleset parsing, during “pull-out”
Could postpone fix...

 19/29Netfilter: Making large iptables rulesets scale

Take advantage of libiptcTake advantage of libiptc

Take advantage of pull-out and commit system

Pull-out ruleset (one initial ruleset parsing penalty)

Make all modification needed

Commit ruleset (to kernel)

This is how iptables-restore works

Extra bonus:

Several rule changes appear atomic

Update all rules related to a customer at once

No need for temp chains and renaming

 20/29Netfilter: Making large iptables rulesets scale

Perl - IPTables::libiptcPerl - IPTables::libiptc

Cannot use iptables-restore/save

SubnetSkeleton must have is_chain() test function

Created CPAN IPTables::libiptc

Chains: Direct libiptc calls

Rules: Command like interface via iptables.c linking

iptables extensions available on system, dynamic loaded

No need to maintain or port iptables extensions

Remember to commit()

Using this module

I could postponed fixing "initial ruleset parsing"

 21/29Netfilter: Making large iptables rulesets scale

Next scalability issue: Chain lookupNext scalability issue: Chain lookup

Slow chain name lookup

is_chain() testing (internal iptcc_find_label())

Cause by: linearly list search with strcmp()

Affects: almost everything

Rule create, delete, even listing.

Multiple rule changes, eg. iptables-restore, SubnetSkeleton

Rule listing (iptables -nL) with 50k chains:

Takes approx 5 minutes!

After my fix: reduced to 0.5 sec.

 22/29Netfilter: Making large iptables rulesets scale

Chains lookup: SolutionChains lookup: Solution

Solution: binary search on chain names
Important property chain list is sorted by name

Keep original linked list data structure

New data structure: "Chain index"

Array with pointers into linked list with a given spacing (40)

Result: better starting points when searching the linked list

0 1 2 3

B D F H J L N

Chain index: Array

C E

Chain list: linked list, sorted by chain name

OMKIG

Mainline: iptables ver.1.4.1, git:2008-01-15

 23/29Netfilter: Making large iptables rulesets scale

Chain index: Insert chainChain index: Insert chain

Handle: Inserting/creating new chains

Inserting don't change correctness of chain index

only cause longer lists

rebuild after threshold inserts (355)

0 1 2 3

B D F H J L N P

Chain index: Array

Chain list: linked list, sorted by chain name

C EA

 Inserting before first element is special

 24/29Netfilter: Making large iptables rulesets scale

Chain index: Delete chainChain index: Delete chain

 Handle: deletion of chains

Delete chain not pointed to by chain index, no effect

Delete chain pointed to by chain index, possible rebuild

Replace index pointer with next pointer

Only if next pointer not part of chain index

0 1 2 3

B D F H J L N

Chain index: Array

C E

Chain list: linked list, sorted by chain name

OMKIG

Rebuild array

 25/29Netfilter: Making large iptables rulesets scale

Solving: Initial ruleset parsingSolving: Initial ruleset parsing

Back to fixing "initial ruleset parsing".
Did have a fix, but was not 64-bit compliant (2007-11-26)

Problem: Resolving jump rules is slow

For each: Jump Rule

Do a linearly, offset based, search of chain list

Solution:

Reuse binary search algorithm and data structure

Realize chain list are both sorted by name and offsets

Ruleset from kernel already sorted

mainline: iptables ver.1.4.2-rc1, git: 2008-07-03

 26/29Netfilter: Making large iptables rulesets scale

Summary: Load timeSummary: Load time

Personal firewall
Reload all rules on a production machine

Chains: 5789
Rules: 22827

 Number of calls 74659
 Total time used 1.92sec
 Average per call 0.00002567 sec

action calls time per call
set_policy 1 0.00007701 0.00007701
append_rule 8399 0.49619532 0.00005908
insert_rule 4463 0.24729586 0.00005541
flush_entries 4726 0.03449988 0.00000730
init 1 0.04638195 0.04638195
commit 1 0.08120894 0.08120894
list_rules_IPs 1181 0.02705002 0.00002290
is_chain 46965 0.37487888 0.00000798
delete_rule 8922 0.60892868 0.00006825
Sum 74659 1.91651654sec

Total time entire script 23.72sec

Machine with the most customers, has in filter table
Chains: 9827 Rules:36532

 27/29Netfilter: Making large iptables rulesets scale

Summary: Open SourceSummary: Open Source

Open Source Status

Chain lookup fix

In iptables version 1.4.1

50k chains, listing 5 min -> 0.5 sec

Initial ruleset parsing fix

In iptables version 1.4.2-rc1

Production, reached 10 sec -> 0.046 sec

IPTables::libiptc

Released on CPAN

IPTables::SubnetSkeleton

Available via http://people.netfilter.org/hawk/

http://people.netfilter.org/hawk/

 28/29Netfilter: Making large iptables rulesets scale

Summary: Goal reached?Summary: Goal reached?

Goal of 5000 equipment,

Production, reached 3400

CPU load 30% average, 62% in peek.

CPU Xeon (Hyperthread) 3.2 Ghz, 1MB cache

In filter table Chains: 9827 Rules: 36532

 29/29Netfilter: Making large iptables rulesets scale

The EndThe End

Goodbye
and thank you for accepting the patches...

81.161.128/0/18

195.135.216.0/22

87.72.0.0/16

82.211.224.0/19

 30/29Netfilter: Making large iptables rulesets scale

Extra slidesExtra slides

Bonus slides

if time permits

or funny questions arise

 31/29Netfilter: Making large iptables rulesets scale

Route cache perfRoute cache perf

Improved route cache

Kernel 2.6.15 --> 2.6.25

Thanks to Eric Dumazet

 32/29Netfilter: Making large iptables rulesets scale

CPU util softirqCPU util softirq

Softirq CPU usage dropped

Kernel 2.6.15 --> 2.6.25

Patrick McHardy, improved conntrack locking

 33/29Netfilter: Making large iptables rulesets scale

More libiptc statsMore libiptc stats

Machine with the most customers,

Customers:2105 Equipment: 3477

In filter table Chains: 9827 Rules: 36532

In mangle table Chains: 2770 Rules:14275

“Init” time: 0.10719919s

“is_chain” time: 0.00001473s

 34/29Netfilter: Making large iptables rulesets scale

BSD pf firewallingBSD pf firewalling

My limited knowledge of

Open/FreeBSD's firewall facility: pf (packet filter)

Don't have chains with rules like iptables: Uses one list/chain

To compensate, they have an “ipset” like facility called “tables”

Quite smart using a radix tree.

Has a basic ruleset-optimizer, performs four tasks:

remove duplicate rules

remove rules that are a subset of another rule

combine multiple rules into a table when advantageous

re-order the rules to improve evaluation performance

Don't think pf would solve my categorization needs

I could not use “ipset”, for the same reasons cannot use pf “tables”

	Frontpage
	Who Am I
	overview
	ComX-intro
	Surroundings
	linux-box
	issues: general
	overview: two subjects
	Issue: Route perf
	Solved before?
	Categorize tasks
	SubnetSkeleton: Solution
	SubnetSkeleton: Algorithm
	SubnetSkeleton: CIDR partition
	SubnetSkeleton: iptables terms
	Code:SubnetSkeleton
	Sum: Route perf achieved
	New subject: slow libiptc
	libiptc as advantage
	IPTables::libiptc
	issue: chain lookup
	chain lookup
	insert chain
	delete chain
	Solve: init rule parse
	libiptc stats
	OpenSource status
	Goal reached
	The End
	Extra slides
	route cache
	softirq
	more libiptc stats
	BSD pf

