
Bleeding edge Linux Kernel network stack development efforts1/24

Next steps for Linux Network stack

approaching 100Gbit/s

Jesper Dangaard Brouer
Principal Engineer, Red Hat

The Camp, Juli 26, 2016
License: CC-BY-SA

Bleeding edge Linux Kernel network stack development efforts2/24

Introduction

● Next steps for Linux Network stack
● Approaching 100Gbit/s HW speeds

● Software stack is under pressure!

● Disclaimer: This is my bleeding edge “plan”
● Most of this is not accepted upstream

● And might never be…!

● Challenging work ahead!
● Encourage people:

● Go solve these issue before me! ;-)

Bleeding edge Linux Kernel network stack development efforts3/24

Overview: Topics

● MM-bulk – more use-cases

● RX path – multi-fold solutions needed
● Drivers RX-ring prefetching
● RX bundles towards netstack
● Page-pool

● Make RX pages writable
● Revert DMA performance-tradeoff hacks

● TX xmit_more “powers” – not used in practice

● Qdisc – Redesign needed?

● XDP – eXpress Data Path

Bleeding edge Linux Kernel network stack development efforts4/24

MM-bulk: Status

● Status: upstream since kernel 4.6
● Bulk APIs for kmem_cache (SLAB+SLUB)

● Netstack use bulk free of SKBs in NAPI-context

● Generic kfree_bulk API
● Rejected: Netstack bulk alloc of SKBs

● As number of RX packets were unknown

Bleeding edge Linux Kernel network stack development efforts5/24

MM-bulk: More use-cases

● Network stack – more use-cases
● Need explicit bulk free use from TCP stack

● NAPI bulk free, not active for TCP (keep ref too long)

● Use kfree_bulk() for skb→head
● (when allocated with kmalloc)

● Use bulk free API for qdisc delayed free
● RCU use-case

● Use kfree_bulk() API for delayed RCU free
● Other kernel subsystems?

Bleeding edge Linux Kernel network stack development efforts6/24

RX path: Missed driver opportunities

● NAPI already allow a level of RX bulking
● Drivers (usually) get 64 packet budget (by napi_poll)
● Drivers don't take advantage of bulk opportunity

● Missed RX opportunities:
● Drivers process RX-ring 1-packet at the time

● Call full network stack every time

● Cause:
● I-cache likely flushed, when returning to driver code
● Stall on cache-miss reading packet (ethertype)
● No knowledge about how many "ready" RX packets

Bleeding edge Linux Kernel network stack development efforts7/24

RX path: Early driver pre-RX-loop

● If RX ring contains multiple "ready" packets
● Means kernel was too slow (processing incoming packets)

● Thus, switch into more efficient mode (bulking)
● Dynamically scaling to load...

● Idea: Split driver RX-loop
● Introduce a pre-RX-loop for counting and prefetching

● Purpose of driver pre-RX loop
● Knowing number of packets: allow bulk alloc of SKBs
● Prefetching to hide cache-miss

Bleeding edge Linux Kernel network stack development efforts8/24

RX path: DDIO technology

● Intel Data Direct I/O Technology (DDIO)
● HW essentially deliver packet data in L3-cache
● Only avail on high-end E5-based servers

● Driver pre-RX loop
● Prefetch part: simplified software version of DDIO

● Still benefit for DDIO CPUs
● Bulk alloc of SKBs, saving
● (Only) hide L3->L1 cache miss
● Better I-cache usage in driver-code

Bleeding edge Linux Kernel network stack development efforts9/24

RX path: RX bulking to netstack

● More controversial to deliver a "bundle" to netstack
● (Driver pre-RX loop is contained inside driver)
● Split of Driver and netstack code, optimize/split I-cache usage

● RFC proposal by Edward Cree
● Drivers simply queue RX pkts on SKB list (no-prefetch RX loop)

● Results very good:

● First step, 10.2% improvement (simply loop in netstack)
● Full approach, 25.6% improvement (list'ify upto ip_rcv)

● Interesting, but upstream was not ready for this step

● More opportunities when netstack know bundle size
● E.g. caching lookups, flush/free when bundle ends

http://thread.gmane.org/gmane.linux.network/408780

Bleeding edge Linux Kernel network stack development efforts10/24

RX-path: Issue RX page are read-only

● Most drivers have read-only RX pages
● Cause more expensive SKB setup

1) Alloc separate writable mem area

2) Copy over RX packet headers

3) Store skb_shared_info in writable-area

4) Setup pointers and offsets, into RX page-"frag"

● Reason: Performance trade off

A)Page allocator is too slow

B)DMA-API expensive on some platforms (with IOMMU)
● Hack: alloc and DMA map larger pages, and “chop-up” page
● Side-effect: read-only RX page-frames

● Due to unpredictable DMA unmap time

Bleeding edge Linux Kernel network stack development efforts11/24

RX-path: Make RX pages writable

● Need to make RX pages writable
● This implicit what Eric Dumazet means when saying:

 "Drivers should use build_skb()"
● My solution is the page-pool

● Address:
● Page-allocator speed

● As a specialized allocator require less checks
● DMA IOMMU mapping cost

● Keeping page mapped
● Make writable

● By predictable DMA unmap point

Bleeding edge Linux Kernel network stack development efforts12/24

Page-pool: Design

● Idea presented at MM-summit April 2016

● Basic ideas for a page-pool
● Pages are recycled back into originating pool

● Creates a feedback loop, helps limit pages in pool

● Drivers still need to handle dma_sync part
● Page-pool handle dma_map/unmap

● essentially: constructor and destructor calls

● Page free/return to page-pool, Either:

1) SKB free knows and call page pool free, or

2) put_page() handle via page flag

http://people.netfilter.org/hawk/presentations/MM-summit2016/generic_page_pool_mm_summit2016.pdf

Bleeding edge Linux Kernel network stack development efforts13/24

Page-pool: opportunity – feedback loop

● Today: Unbounded RX page allocations by drivers
● Can cause OOM (Out-of-Memory) situations
● Handled via skb->truesize and queue limits

● Page pool provides a feedback loop
● (Given pages are recycles back to originating pool)

● Allow bounding pages/memory allowed per RXq
● Simple solution: configure fixed memory limit
● Advanced solution, track steady-state

● Can function as a “Circuit Breaker” (See RFC draft link)

https://tools.ietf.org/html/draft-ietf-tsvwg-circuit-breaker-15

Bleeding edge Linux Kernel network stack development efforts14/24

TX powers – background

● Solved TX bottleneck with xmit_more API
● See: http://netoptimizer.blogspot.dk/2014/10/unlocked-10gbps-tx-wirespeed-smallest.html

● 10G wirespeed: Pktgen 14.8Mpps single core
● Spinning same SKB (no mem allocs)

● Primary trick: Bulk packet (descriptors) to HW
● Delays HW NIC tailptr write

● Activated via Qdisc bulk dequeue
● Issue: hard to “activate”

http://netoptimizer.blogspot.dk/2014/10/unlocked-10gbps-tx-wirespeed-smallest.html

Bleeding edge Linux Kernel network stack development efforts15/24

TX powers – performance gain

● Only artificial benchmarks realize gain
● like pktgen

● How big is the difference?
● with pktgen, ixgbe, single core E5-2630 @2.30GHz

● TX 2.9 Mpps (clone_skb 0, burst 0) (343 nanosec)

↑ Alloc+free SKB+page on for every packet

● TX 6.6 Mpps (clone_skb 10000) (151 nanosec)

↑ x2 performance: Reuse same SKB 10000 times

● TX 13.4 Mpps (pktgen burst 32) (74 nanosec)

↑ x2 performance: Use xmit_more with 32 packet bursts
● Faster CPU can reach wirespeed 14.8 Mpps (single core)

Bleeding edge Linux Kernel network stack development efforts16/24

TX powers – Issue

● Only realized for artificial benchmarks, like pktgen

● Issue: For practical use-cases
● Very hard to "activate" qdisc bulk dequeue

● Qdisc supporting bulk dequeue (were) limited
● Eric Dumazet very recently extended to more Qdisc's

● Need to hit HW bandwidth limit to “kick-in”
● Seen TCP hit BW limit, result lower CPU utilization
● Want to realized gain earlier.

● Next-step: bulk enqueue

Bleeding edge Linux Kernel network stack development efforts17/24

Qdisc: layer issues

● Issues with qdisc layer
● Too many (6) lock operations

● even for the empty queue case!

● Bulk TX xmit_more "powers" hard to utilize
● Bulk enqueue could mitigate situation

● Enqueue and dequeue block each-other
● Enqueue'ers starve the single dequeuer
● "strange" heuristic for avoiding enqueue to starve dequeue

● Thanks: Other people are looking at this area
● Eric Dumazet, Florian Westphal and John Fastabend

Bleeding edge Linux Kernel network stack development efforts18/24

Qdisc: Time to redesign qdisc layer?

● Interesting solution in article:
● "A Fast and Practical Software Packet Scheduling Architecture"

● By: Luigi Rizzo <rizzo@iet.unipi.it>

● Main take-way: “arbiter” serialize enqueue+dequeue step

● packets are "submitted" in parallel (lockless queues)
● arbiter scans queues, and preform enqueue step

● Linux already have single dequeue process "scheme"

● Could take role of arbiter
● If submitter/enqueue see qdisc_is_running()

● store packet in intermediate lockless queue
● arbiter/dequeue will guarantee to pickup fast, call enqueue()

http://info.iet.unipi.it/~luigi/papers/20160511-mysched-preprint.pdf
mailto:rizzo@iet.unipi.it

Bleeding edge Linux Kernel network stack development efforts19/24

XDP: eXpress Data Path

● An eXpress Data Path (XDP) in kernel-space
● The "packet-page" idea from NetDev1.1 "rebranded"
● Thanks to: Tom Herbert, Alexei and Brenden Blanco,

putting effort behind idea
● Performance is primary focus and concern

● Need features: use normal stack delivery

● Very exciting: Allow comparison against DPDK
● Same lower level handling as DPDK
● Allow comparing "apples-to-apples"

https://github.com/iovisor/bpf-docs/blob/master/Express_Data_Path.pdf

Bleeding edge Linux Kernel network stack development efforts20/24

XDP: What is it?

● Thin layer at lowest levels of SW network stack
● Before allocating SKBs
● Inside device drivers RX function
● Operate directly on RX packet-pages

● XDP is NOT kernel bypass
● Designed to work in concert with stack

● XDP - run-time programmability via "hook"
● Current proposal: run eBPF program at hook point

Bleeding edge Linux Kernel network stack development efforts21/24

XDP: Stages

● Project still young
● First XDP-summit held June 23 (2016)

● Phases of the project:
● 1) Fast DDoS filter [achievable]
● 2) One-legged load-balance/forwarding

● in-out-same-NIC [doable]

● 3) More generic forwarding [challenging]
● 4) RAW packet dump (steal packets) [challenging]

● XDP patchset V10 accepted Juli 20
● Basic infrastructure for phase 1 and 2

● Will appear in kernel 4.8

http://thread.gmane.org/gmane.linux.network/422285

Bleeding edge Linux Kernel network stack development efforts22/24

XDP: Performance evaluation

● Evaluated on Mellanox 40Gbit/s NICs (mlx4)
● Single CPU (with DDIO) performance

● 20 Mpps – Filter drop all (but read/touch data)
● 12 Mpps – TX-bounce forward (TX bulking)
● 10 Mpps – TX-bounce with udp+mac rewrite

● Single CPU without DDIO (cache-misses)
● TX-bounce with udp+mac rewrite:

● 8.5Mpps – cache-miss
● 12.3Mpps – RX prefetch loop trick

● Page allocator is now primary bottleneck
● Page-pool should remove that bottleneck

Bleeding edge Linux Kernel network stack development efforts23/24

Status: Linux perf improvements

● Linux performance, recent improvements
● approx past 2 years:

● Lowest TX layer (single core, pktgen):
● Started at: 4 Mpps → 14.8 Mpps (← max 10G wirespeed)

● Lowest RX layer (single core):
● Started at: 6.4 Mpps → 12 Mpps (still experimental)

● XDP: drop 20Mpps (looks like HW limit)

● IPv4-forwarding
● Single core: 1 Mpps → 2 Mpps → (experiment) 2.5Mpps
● Multi core : 6 Mpps → 12 Mpps (RHEL7.2 benchmark)

● XDP single core TX-bounce fwd: 10Mpps

Bleeding edge Linux Kernel network stack development efforts24/24

The end

● Exciting times for network performance!
● Evaluation show XDP will be as fast as DPDK

Bleeding edge Linux Kernel network stack development efforts25/24

EXTRA SLIDES

Bleeding edge Linux Kernel network stack development efforts26/24

RPS – Bulk enqueue to remote CPU

● RPS = Recv Packet Steering
● Software balancing of flows (to/across CPUs)

● Current RPS
● Remote CPUs does bulk/list-splice “dequeue”
● RX CPU does single packet “enqueue”

● Experiment (Prove-of-concept code)
● 4 Mpps RX limit hit with RPS
● 9Mpps doing bulk “enqueue” (flush when NAPI ends)

● The “dequeue” CPU can still only handle 4 Mpps

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26

