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Introduction

● Next steps for Linux Network stack
● Approaching 100Gbit/s HW speeds

● Software stack is under pressure!

● Disclaimer: This is my bleeding edge “plan”
● Most of this is not accepted upstream

● And might never be…!

● Challenging work ahead!
● Encourage people:

● Go solve these issue before me! ;-)
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Overview: Topics

● MM-bulk – more use-cases

● RX path – multi-fold solutions needed
● Drivers RX-ring prefetching
● RX bundles towards netstack
● Page-pool

● Make RX pages writable
● Revert DMA performance-tradeoff hacks

● TX xmit_more “powers” – not used in practice 

● Qdisc – Redesign needed?

● XDP – eXpress Data Path
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MM-bulk: Status

● Status: upstream since kernel 4.6
● Bulk APIs for kmem_cache (SLAB+SLUB) 

● Netstack use bulk free of SKBs in NAPI-context

● Generic kfree_bulk API
● Rejected: Netstack bulk alloc of SKBs

● As number of RX packets were unknown
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MM-bulk: More use-cases

● Network stack – more use-cases
● Need explicit bulk free use from TCP stack

● NAPI bulk free, not active for TCP (keep ref too long)

● Use kfree_bulk() for skb→head
● (when allocated with kmalloc)

● Use bulk free API for qdisc delayed free
● RCU use-case

● Use kfree_bulk() API for delayed RCU free
● Other kernel subsystems?



Bleeding edge Linux Kernel network stack development efforts6/24

RX path: Missed driver opportunities

● NAPI already allow a level of RX bulking
● Drivers (usually) get 64 packet budget (by napi_poll)
● Drivers don't take advantage of bulk opportunity

● Missed RX opportunities:
● Drivers process RX-ring 1-packet at the time

● Call full network stack every time

● Cause:
● I-cache likely flushed,  when returning to driver code
● Stall on cache-miss reading packet (ethertype)
● No knowledge about how many "ready" RX packets
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RX path: Early driver pre-RX-loop

● If RX ring contains multiple "ready" packets
● Means kernel was too slow (processing incoming packets)

● Thus, switch into more efficient mode (bulking)
● Dynamically scaling to load...

● Idea: Split driver RX-loop
● Introduce a pre-RX-loop for counting and prefetching

● Purpose of driver pre-RX loop
● Knowing number of packets: allow bulk alloc of SKBs
● Prefetching to hide cache-miss
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RX path: DDIO technology

● Intel Data Direct I/O Technology (DDIO)
● HW essentially deliver packet data in L3-cache
● Only avail on high-end E5-based servers

● Driver pre-RX loop
● Prefetch part: simplified software version of DDIO

● Still benefit for DDIO CPUs
● Bulk alloc of SKBs, saving
● (Only) hide L3->L1 cache miss
● Better I-cache usage in driver-code
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RX path: RX bulking to netstack

● More controversial to deliver a "bundle" to netstack
● (Driver pre-RX loop is contained inside driver)
● Split of Driver and netstack code, optimize/split I-cache usage

● RFC proposal by Edward Cree
● Drivers simply queue RX pkts on SKB list (no-prefetch RX loop)

● Results very good:

● First step, 10.2% improvement (simply loop in netstack)
● Full approach, 25.6% improvement (list'ify upto ip_rcv)

● Interesting, but upstream was not ready for this step

● More opportunities when netstack know bundle size
● E.g. caching lookups, flush/free when bundle ends

http://thread.gmane.org/gmane.linux.network/408780
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RX-path: Issue RX page are read-only

● Most drivers have read-only RX pages
● Cause more expensive SKB setup

1) Alloc separate writable mem area

2) Copy over RX packet headers

3) Store skb_shared_info in writable-area

4) Setup pointers and offsets, into RX page-"frag"

● Reason: Performance trade off

A)Page allocator is too slow

B)DMA-API expensive on some platforms (with IOMMU)
● Hack: alloc and DMA map larger pages, and “chop-up” page
● Side-effect: read-only RX page-frames

● Due to unpredictable DMA unmap time
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RX-path: Make RX pages writable

● Need to make RX pages writable
● This implicit what Eric Dumazet means when saying:

  "Drivers should use build_skb()"
● My solution is the page-pool

● Address:
● Page-allocator speed

● As a specialized allocator require less checks
● DMA IOMMU mapping cost

● Keeping page mapped
● Make writable

● By predictable DMA unmap point
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Page-pool: Design

● Idea presented at MM-summit April 2016

● Basic ideas for a page-pool
● Pages are recycled back into originating pool

● Creates a feedback loop, helps limit pages in pool

● Drivers still need to handle dma_sync part
● Page-pool handle dma_map/unmap

● essentially: constructor and destructor calls

● Page free/return to page-pool, Either:

1) SKB free knows and call page pool free, or

2) put_page() handle via page flag

http://people.netfilter.org/hawk/presentations/MM-summit2016/generic_page_pool_mm_summit2016.pdf
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Page-pool: opportunity – feedback loop

● Today: Unbounded RX page allocations by drivers
● Can cause OOM (Out-of-Memory) situations
● Handled via skb->truesize and queue limits

● Page pool provides a feedback loop
● (Given pages are recycles back to originating pool)

● Allow bounding pages/memory allowed per RXq
● Simple solution: configure fixed memory limit
● Advanced solution, track steady-state

● Can function as a “Circuit Breaker” (See RFC draft link)

https://tools.ietf.org/html/draft-ietf-tsvwg-circuit-breaker-15
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TX powers – background

● Solved TX bottleneck with xmit_more API
● See: http://netoptimizer.blogspot.dk/2014/10/unlocked-10gbps-tx-wirespeed-smallest.html

● 10G wirespeed: Pktgen 14.8Mpps single core
● Spinning same SKB (no mem allocs)

● Primary trick: Bulk packet (descriptors) to HW
● Delays HW NIC tailptr write

● Activated via Qdisc bulk dequeue
● Issue: hard to “activate”

http://netoptimizer.blogspot.dk/2014/10/unlocked-10gbps-tx-wirespeed-smallest.html
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TX powers – performance gain

● Only artificial benchmarks realize gain 
● like pktgen

● How big is the difference?
● with pktgen, ixgbe, single core E5-2630 @2.30GHz

● TX  2.9 Mpps (clone_skb 0, burst 0) (343 nanosec)

↑ Alloc+free SKB+page on for every packet

● TX  6.6 Mpps (clone_skb 10000) (151 nanosec)

↑ x2 performance: Reuse same SKB 10000 times

● TX 13.4 Mpps (pktgen burst 32) (74 nanosec)

↑ x2 performance: Use xmit_more with 32 packet bursts
● Faster CPU can reach wirespeed 14.8 Mpps (single core)
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TX powers – Issue

● Only realized for artificial benchmarks, like pktgen

● Issue: For practical use-cases
● Very hard to "activate" qdisc bulk dequeue

● Qdisc supporting bulk dequeue (were) limited
● Eric Dumazet very recently extended to more Qdisc's

● Need to hit HW bandwidth limit to “kick-in”
● Seen TCP hit BW limit, result lower CPU utilization
● Want to realized gain earlier.

● Next-step: bulk enqueue
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Qdisc: layer issues

● Issues with qdisc layer
● Too many (6) lock operations

● even for the empty queue case!

● Bulk TX xmit_more "powers" hard to utilize
● Bulk enqueue could mitigate situation

● Enqueue and dequeue block each-other
● Enqueue'ers starve the single dequeuer
● "strange" heuristic for avoiding enqueue to starve dequeue

● Thanks: Other people are looking at this area
● Eric Dumazet, Florian Westphal and John Fastabend
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Qdisc: Time to redesign qdisc layer?

● Interesting solution in article:
● "A Fast and Practical Software Packet Scheduling Architecture"

● By: Luigi Rizzo <rizzo@iet.unipi.it>

● Main take-way: “arbiter” serialize enqueue+dequeue step

● packets are "submitted" in parallel (lockless queues)
● arbiter scans queues, and preform enqueue step

● Linux already have single dequeue process "scheme"

● Could take role of arbiter
● If submitter/enqueue see qdisc_is_running()

● store packet in intermediate lockless queue
● arbiter/dequeue will guarantee to pickup fast, call enqueue()

http://info.iet.unipi.it/~luigi/papers/20160511-mysched-preprint.pdf
mailto:rizzo@iet.unipi.it
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XDP: eXpress Data Path

● An eXpress Data Path (XDP) in kernel-space
● The "packet-page" idea from NetDev1.1 "rebranded"
● Thanks to: Tom Herbert, Alexei and Brenden Blanco, 

putting effort behind idea
● Performance is primary focus and concern

● Need features: use normal stack delivery

● Very exciting: Allow comparison against DPDK
● Same lower level handling as DPDK
● Allow comparing "apples-to-apples"

https://github.com/iovisor/bpf-docs/blob/master/Express_Data_Path.pdf
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XDP: What is it?

● Thin layer at lowest levels of SW network stack
● Before allocating SKBs
● Inside device drivers RX function
● Operate directly on RX packet-pages

● XDP is NOT kernel bypass
● Designed to work in concert with stack

● XDP - run-time programmability via "hook"
● Current proposal: run eBPF program at hook point
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XDP: Stages

● Project still young
● First XDP-summit held June 23 (2016)

● Phases of the project:
● 1) Fast DDoS filter [achievable]
● 2) One-legged load-balance/forwarding

●  in-out-same-NIC [doable]

● 3) More generic forwarding [challenging]
● 4) RAW packet dump (steal packets) [challenging] 

● XDP patchset V10 accepted Juli 20
● Basic infrastructure for phase 1 and 2

● Will appear in kernel 4.8

http://thread.gmane.org/gmane.linux.network/422285
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XDP: Performance evaluation

● Evaluated on Mellanox 40Gbit/s NICs (mlx4)
● Single CPU (with DDIO) performance

● 20 Mpps – Filter drop all (but read/touch data)
● 12 Mpps – TX-bounce forward (TX bulking)
● 10 Mpps – TX-bounce with udp+mac rewrite

● Single CPU without DDIO (cache-misses)
● TX-bounce with udp+mac rewrite:

● 8.5Mpps – cache-miss
● 12.3Mpps – RX prefetch loop trick

● Page allocator is now primary bottleneck
● Page-pool should remove that bottleneck
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Status: Linux perf improvements

● Linux performance, recent improvements
●  approx past 2 years:

● Lowest TX layer (single core, pktgen):
● Started at: 4 Mpps → 14.8 Mpps (← max 10G wirespeed)

● Lowest RX layer (single core):
● Started at: 6.4 Mpps → 12 Mpps (still experimental)

● XDP: drop 20Mpps (looks like HW limit)

● IPv4-forwarding
● Single core: 1 Mpps → 2 Mpps → (experiment) 2.5Mpps 
● Multi core : 6 Mpps → 12 Mpps (RHEL7.2 benchmark)

● XDP single core TX-bounce fwd: 10Mpps
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The end

● Exciting times for network performance!
● Evaluation show XDP will be as fast as DPDK
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EXTRA SLIDES
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RPS – Bulk enqueue to remote CPU

● RPS = Recv Packet Steering
● Software balancing of flows (to/across CPUs)

● Current RPS
● Remote CPUs does bulk/list-splice “dequeue”
● RX CPU does single packet “enqueue”

● Experiment (Prove-of-concept code)
● 4 Mpps RX limit hit with RPS
● 9Mpps doing bulk “enqueue” (flush when NAPI ends)

● The “dequeue” CPU can still only handle 4 Mpps
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