
XDP explained, the Camp 20171/32

XDP – eXpress Data Path
An in-kernel network fast-path

A technology overview

Jesper Dangaard Brouer
Principal Engineer, Red Hat

TheCamp, Denmark
July 2017

XDP explained, the Camp 20172/32

Introduction

● This presentation is about XDP
● Making people aware of this technology
● Explaining the building blocks of XDP

● Understand idea behind eBPF

XDP explained, the Camp 20173/32

What is the problem?

● Compared to bypass solutions, DPDK and netmap
● Linux kernel networking is said to be slow

● Fundamental reason: Linux build on assumption
● that most packets travel into sockets

● takes cost upfront of allocating a "socket buff" (sk_buff/SKB)

● Linux lacks an in-kernel fast-path
● DPDK bypass operate on "earlier" network layer
● Kernel lack network layer before allocating SKBs

XDP explained, the Camp 20174/32

Why is an in-kernel fast-path needed?

● Today everything relies on networking
● Kernel provides core foundation for network

● Solutions like DPDK: make networking an add-on
● No longer part of core foundation everybody share
● DPDK require maintaining full separate drivers
● Special kernel boot parameters, 100% CPU usage
● Harder to integrate into products/solutions

● e.g. DPDK and containers are not compatible
● e.g. you need to reimplement a TCP/IP stack

● Need in-kernel fast-path solution, part of core
● that works in concert with the existing network stack

XDP explained, the Camp 20175/32

What is XDP (eXpress Data Path)?

● XDP is an in-kernel network fast-path facility
● The "packet-page" idea from NetDev1.1 (Feb 2016) "rebranded"

● Performance is primary focus and concern
● Yes, it is as fast as DPDK and netmap

● XDP is NOT kernel bypass
● Designed to work in concert with netstack
● "Just" an earlier packet processing stage
● Adaptive RX interrupt model (via NAPI)

● XDP run-time programmable: via eBPF
● User-defined, sandboxed bytecode executed by the kernel

https://lkml.org/lkml/2015/4/14/232

XDP explained, the Camp 20176/32

XDP: Performance evaluation, crazy fast!!!

● Evaluated on Mellanox 40Gbit/s NICs (mlx4)
● Single CPU with DDIO performance

● 20 Mpps – Filter drop all (but read/touch data)
● 12 Mpps – TX-bounce forward (TX bulking)
● 10 Mpps – TX-bounce with udp+mac rewrite

● Single CPU without DDIO (cache-misses)
● TX-bounce with udp+mac rewrite:

● 8.5Mpps – cache-miss
● 12.3Mpps – RX prefetch loop trick

● RX cache prefetch loop trick: 20 Mpps XDP_DROP

XDP explained, the Camp 20177/32

XDP: New building block for Networking

● XDP is a core kernel facility (since kernel v4.9)

● Other Open Source projects pickup and use this
● DDoS protection (PoC code for blacklist)

● Cilium (Most promising and complete solution for container)

● IOvisor/BCC - goal of creating userspace library

● Companies already using XDP:
● Facebook: DDoS + Load-balancer (10x boost vs. IPVS)

● CloudFlare: DDoS protection (waiting for SolarFlare support)

● One.com: DDoS protection

https://github.com/netoptimizer/prototype-kernel/blob/master/kernel/samples/bpf/
https://github.com/netoptimizer/prototype-kernel/blob/master/kernel/samples/bpf/xdp_ddos01_blacklist_kern.c
https://www.cilium.io/
https://github.com/iovisor/bcc

XDP explained, the Camp 20178/32

XDP introduce: earlier packet processing stage

● Traditionally Linux Kernel Networking
● Rely on meta-data struct sk_buff (called "SKB")

● Keep state and pointers to real packet-data
● Assume most pkts reach deep into netstack (socket delivery)

● Take alloc, setup and clear cost of SKB "upfront"

● XDP change this: “new layer in network stack”

● Early parts of network stack don't need full SKB
● XDP gives access to packet-data, before the SKB is allocated

● As early as possible: hook in NIC drivers
● Via programmable interface (eBPF)

XDP explained, the Camp 20179/32

Device driver dependency

● For high speed:
● XDP depend on drivers implement RX hook

● Luckily only software limitation

● Fairly small change to drivers, low maintenance cost
● especially compared to DPDK model of reimpl. drivers

● For ease of development: XDP "skb"-mode (v4.12)

● Allow attaching XDP programs to any net_device
● Makes it easier to devel and test XDP programs
● Runs after SKB is allocated: obviously slower

https://prototype-kernel.readthedocs.io/en/latest/blogposts/xdp25_eval_generic_xdp_tx.html

XDP explained, the Camp 201710/32

Device drivers with Native XDP support

● Mellanox: mlx4 (v4.10) + mlx5 (v4.9)

● Netronome: nfp (v4.10)

● Virtio-net (v4.10)

● Cavium/Qlogic: qede (v4.10)

● Cavium: thunder/nicvf (v4.12)

● Broadcom: bnxt (v4.12)

● Intel: ixgbe (v4.12) + i40e (net-next)

https://prototype-kernel.readthedocs.io/en/latest/networking/XDP/implementation/drivers.html

XDP explained, the Camp 201711/32

What is eBPF? (extended Berkeley Packet Filter)

● Originally programmable filter language for tcpdump
● 1992 by Van Jacobson and Steven McCanne

● Alexei (3.18) generalized and extended instruction set
● Introduced maps: key-value store, share-able

● eBPF: User-defined, sandboxed bytecode executed by the kernel

● Lot of eBPF activity within tracing part of kernel
● seccomp-bpf, filter syscalls (e.g. used by Docker, OpenSSH)

● eBPF in Networking, many areas already
● tcpdump + CPU steering, socket filter, iptables match module
● Traffic-Control (tc) filter and actions for ingress/egress qdisc

● Used by Cilium to speedup and secure container networking

https://twitter.com/alexei_ast
https://lkml.org/lkml/2015/4/14/232

XDP explained, the Camp 201712/32

XDP and eBPF user programmable networking

● XDP and eBPF really good combination
● New era in user programmable networking

● Kernel side: responsible for moving packet fast

● eBPF side: maximum flexibility and opt-in
● User programmable protocol and policies
● Customers can quickly implement something

● Keeps policy choices outside kernel
● Kernel is free from maintaining this forever \o/

● Only run program code user actually need
● No accumulative feature bloat

● No need to run code everybody else once needed

XDP explained, the Camp 201713/32

Fundamentally: XDP+eBPF gives adaptability

● XDP is also about maintainability and adapting quickly

● Customers want a long term stable kernel
● but want to newest feature today

● XDP+eBPF gives programmable policies
● Avoids creating kernel-ABI for every specific policy
● Customer can adapt, without upgrading kernel

● Gives flexibility to adjust to the unknown
● Cannot predict the future

● instead add room for adapting quickly

XDP explained, the Camp 201714/32

eBPF as "micro-kernel" components

● Understand the architectural concept behind eBPF
● eBPF program are not real programs

● it is program snippets loaded into kernel

● See as components implementing specific behaviors
● Glue them together

● using maps, and userspace orchestration

● Building something that looks like “micro-services”
● Just running inside the kernel

● could see it as "micro-kernel" components

XDP explained, the Camp 201715/32

Credit: OVS conference 2016, Cilium architecture

https://www.slideshare.net/JesperDangaardBrouer/clipboards/bpf-architecture

XDP explained, the Camp 201716/32

eBPF programming model

● Restrictions: Run code in kernel in a safe environment
● Must execute in short finite amount of time

● Memory accesses strictly controlled and verified

● No back branches allowed, and none needed due to MAPS

● eBPF byte-code is the assembler language
● Full compilers exist from C and other languages into eBPF

● Main compiler: LLVM, more interesting work coming

● eBPF maps are important

● Adjust your programming mindset

XDP explained, the Camp 201717/32

eBPF maps: important core concept

● eBPF Maps, generic key-value store
● Can store/keep state across invocation
● Adjust programming mindset:

● Can implement any Finite State Machine
● see: token bucket https://github.com/qmonnet/tbpoc-bpf

● Can control bpf program flow via maps
● Adjusting maps from userspace

● Maps can be shared between bpf programs
● Exported via filesystem or file-descriptor

● Easy privileged separation via file ownership permissions

https://github.com/qmonnet/tbpoc-bpf

XDP explained, the Camp 201718/32

eBPF - JIT (Just-In-Time) compiling

● How can eBPF byte-code be fast?
● (Hint: it is not...)

● Kernel have JIT stage when loading eBPF
● Transforms byte-code into

● CPU native assembly instructions ←Hint: Very fast!

● All 64-bit architectures are done
● x86_64, arm64, ppc64, mips64, sparc64, s390x

● Smart-NICs looking at HW offloading eBPF
● Like Netronome (driver nfp)

XDP explained, the Camp 201719/32

XDP core building blocks
● What can XDP do?

● Can read and modify packet contents
● Can push and pull headers
● eBPF trigger actions based on return codes

● XDP_DROP - very fast drop by recycling
● DDoS mitigation

● XDP_PASS – pass possibly modified packet to network stack
● Handle and pop new unknown encap protocols

● XDP_TX – Transmit packet back out same interface
● Facebook use it for load-balancing, and DDoS scrubber

● XDP_ABORTED – also drop, but indicate error condition
● Tracepoint: xdp_exception

● XDP_REDIRECT – Transmit out other NICs
● Very new (est.4.14), (plan also use for steering packets CPUs + sockets)

XDP explained, the Camp 201720/32

Kickstarting XDP community

● Mailing list for newbies: xdp-newbies@vger.kernel.org

● Up 3 month (since April 2017 NetDevConf 2.1): 233 emails

● Placed ready to use XDP code on github
● prototype-kernel under samples/bpf/
● Associated XDP/eBPF tutorial on YouTube

● Given April 2017 at NetDevConf 2.1

● Started XDP doc project:
● https://prototype-kernel.readthedocs.io
● Cilium: “BPF and XDP Reference Guide”

● http://cilium.readthedocs.io/en/latest/bpf/
● (p.s. eBPF have own community: iovisor-dev@lists.iovisor.org)

mailto:xdp-newbies@vger.kernel.org
https://marc.info/?l=xdp-newbies
https://github.com/netoptimizer/prototype-kernel/
https://github.com/netoptimizer/prototype-kernel/tree/master/kernel/samples/bpf
https://www.youtube.com/watch?v=iBkR4gvjxtE
http://netdevconf.org/2.1/session.html?gospodarek
https://prototype-kernel.readthedocs.io/
http://cilium.readthedocs.io/en/latest/bpf/
mailto:iovisor-dev@lists.iovisor.org

XDP explained, the Camp 201721/32

Future development and roadmap

● What are the missing features?

● What is on the roadmap?

XDP explained, the Camp 201722/32

Just merged action: XDP_REDIRECT

● New action return code: XDP_REDIRECT
● Hope this will be last action code for drivers
● Allow steering XDP packet buffer

● First obvious use: almost like XDP_TX
● Transmit raw XDP packet out another NIC

● (Delayed tailptr write, important for performance)

● Envision: Flexibility via bpf-maps
● New redirect types, via adding new bpf map types

(Developing PoC code together with John Fastabend)

XDP explained, the Camp 201723/32

Roadmap: Redirect to remote CPUs (1/2)

● New type of redirect to remote CPU (Just a new map type)

● Problem it is trying to solve:
● Slow (userspace) process on RX CPU cause bottleneck
● Current solutions:

● (1) RPS (Receive Packet Steering)
● Happens after SKB alloc
● Enqueue to remote CPU bottleneck

● (2) Splitting workload via socket queue
● Still bottleneck RX CPU
● Too slow: e.g atomic mem-acct + queue management
● SKB alloc and free happens on different CPUs

XDP explained, the Camp 201724/32

Roadmap: Redirect to remote CPUs (2/2)

● Solution: Transfer XDP packet to remote CPU
● Alloc SKB on remote CPU

● and free SKB likely on same CPU

● RX bulk and bulk transfer is key for performance
● page recycle pool facility needed for page performance

● Imply: building SKB outside driver
● Interesting for driver simplification
● Require: extra meta data to populate some SKB fields

XDP explained, the Camp 201725/32

Missing XDP/eBPF feature+helpers: RX hash

● XDP RX hash (have PoC code)
● For correcting HW's hash to make RPS work

● RPS = Receive Packet Steering
● Seen issue with both VXLAN and Q-in-Q

● Issue: NIC placed all packets on 1-CPU
● Do XDP CPU redirect, based on flow hash

● Without touching memory!
● Basically faster version of RPS

XDP explained, the Camp 201726/32

Missing XDP/eBPF feature+helpers: XDP mark

● XDP mark transfer to SKB→mark (have PoC code)

● Way of communicating between XDP and netstack
● Trick used today:

● XDP add VLAN header to packet steer to net_device

● Alexei Starovoitov rejected first iteration
● Want larger/generic "mark" value/area

● Daniel Borkmann is working on this

XDP explained, the Camp 201727/32

Missing XDP/eBPF feature+helpers: csum

● XDP checksum helpers
● Want csum bpf helpers (like for SKBs)
● Make it easier to modify packets

● Currently open-coded csum fixups in eBPF programs

● Match on HW checksum validation info
● Allow early drop on bad csums

● Info from HW-desc needed later
● When want to construct SKB outside driver

XDP explained, the Camp 201728/32

Missing feature negotiation

● Driver XDP hook challenge: bpf helper model
● Core assume bpf helper code means feature avail
● XDP driver might not implement feature

● (like rxhash or mark)
● Particular changes to xdp_buff are challenging

● Unknown action codes not-critical
● Just fall-through to XDP_ABORTED

● Patchset send as RFC
● Top patch and followup patch

http://lkml.kernel.org/r/149512205297.14733.15729847433404265933.stgit@firesoul
http://lkml.kernel.org/r/20170530115806.3086a009@redhat.com

XDP explained, the Camp 201729/32

Supporting eBPF based solution

● What are the challenges and support cost
● When customers start using eBPF?

● Sysadm perspective:
● Customers want support and report issues

● and might neglect to tell they are using eBPF
● Sysadm need tools to “see” what is going on

XDP explained, the Camp 201730/32

Introspection into running eBPF progs

● Need tools for support purposes
● Introspection into running eBPF programs

● e.g basic listing of all running program

● eBPF program IDs (Got added very recently)

● XDP export this ID
● Can now identify what XDP program is running

● Expect better tools for
● Extracting eBPF code from kernel
● And better disassembly and objdump support

XDP explained, the Camp 201731/32

XDP tracepoints

● XDP have strategic tracepoints
● Can be used for debugging exceptions

● like XDP_ABORTED and XDP_TX failures

● Can also attach eBPF to tracepoints
● Via maps, provide feedback loop to XDP program

● particular when XDP_TX/redirect overflow target

● Likely new tracepoint for
● XDP_REDIRECT to ease monitor forwarding

XDP explained, the Camp 201732/32

End slide: Summary

● The Linux Kernel needs an in-kernel fast-path
● Bypass alternatives, is making networking an add-on

● This is bad, networking need to be a core service

● XDP is the in-kernel fast-path solution
● Part of and works in concert with existing network stack
● Lower maintenance cost, as part of the Linux Kernel
● New architecture for user programmable networking

● Userspace in drivers seat
● Via injecting "micro-kernel" components, solve specific needs

XDP explained, the Camp 201733/32

Extra slides

XDP explained, the Camp 201734/32

Product integration

● How does XDP relates to products?

XDP explained, the Camp 201735/32

Product integration: VMs

● Products: OpenStack / OVS

● OpenStack Summit (Oct 2016, PlumGrid+Huawei) Video
● Show using XDP for DDoS protection, protecting VMs

● Drop inside VM cannot keep up

● With XDP_REDIRECT:
● More direct delivery into VMs
● SDN controller

● Accelerate packet delivery via loading eBPF snippets

https://www.openstack.org/videos/video/leveraging-express-data-path-xdp-for-programmable-high-performance-data-path-in-openstack

XDP explained, the Camp 201736/32

Product integration: Containers

● Products: OpenShift / Docker

● XDP can pop and rewrite IPs
● Allows skipping some netstack layer

● With XDP_REDIRECT:
● Skip netstack layers deliver directly to container veth

● eBPF with TC ingress and egress (avail today)
● like Cilium
● can already do more direct deliver into containers

XDP explained, the Camp 201737/32

Credit: DockerCon 2017 - Cilium

https://www.slideshare.net/JesperDangaardBrouer/clipboards/bpf-redirect-into-containers

XDP explained, the Camp 201738/32

Product integration: Replace Network Appliances

● XDP programs on servers, instead of appliance
● serve as 'bump in the wire' to

● protect a rack of servers from DDoS attacks
● or transparent load balancing

● Drastically lower cost/Gbps than appliances

● RHEL supporting XDP enables
● Companies develop these kind of boxes

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38

