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Introduction

● This presentation is about XDP
● Making people aware of this technology
● Explaining the building blocks of XDP

● Understand idea behind eBPF
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What is the problem?

● Compared to bypass solutions, DPDK and netmap
● Linux kernel networking is said to be slow

● Fundamental reason: Linux build on assumption
● that most packets travel into sockets

● takes cost upfront of allocating a "socket buff" (sk_buff/SKB)

● Linux lacks an in-kernel fast-path
● DPDK bypass operate on "earlier" network layer
● Kernel lack network layer before allocating SKBs
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Why is an in-kernel fast-path needed?

● Today everything relies on networking
● Kernel provides core foundation for network

● Solutions like DPDK: make networking an add-on
● No longer part of core foundation everybody share
● DPDK require maintaining full separate drivers
● Special kernel boot parameters, 100% CPU usage
● Harder to integrate into products/solutions

● e.g. DPDK and containers are not compatible
● e.g. you need to reimplement a TCP/IP stack

● Need in-kernel fast-path solution, part of core
● that works in concert with the existing network stack
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What is XDP (eXpress Data Path)?

● XDP is an in-kernel network fast-path facility
● The "packet-page" idea from NetDev1.1 (Feb 2016) "rebranded"

● Performance is primary focus and concern
● Yes, it is as fast as DPDK and netmap

● XDP is NOT kernel bypass
● Designed to work in concert with netstack
● "Just" an earlier packet processing stage
● Adaptive RX interrupt model (via NAPI)

● XDP run-time programmable: via eBPF
● User-defined, sandboxed bytecode executed by the kernel

https://lkml.org/lkml/2015/4/14/232
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XDP: Performance evaluation, crazy fast!!!

● Evaluated on Mellanox 40Gbit/s NICs (mlx4)
● Single CPU with DDIO performance

● 20 Mpps – Filter drop all (but read/touch data)
● 12 Mpps – TX-bounce forward (TX bulking)
● 10 Mpps – TX-bounce with udp+mac rewrite

● Single CPU without DDIO (cache-misses)
● TX-bounce with udp+mac rewrite:

● 8.5Mpps – cache-miss
● 12.3Mpps – RX prefetch loop trick

● RX cache prefetch loop trick: 20 Mpps XDP_DROP
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XDP: New building block for Networking

● XDP is a core kernel facility (since kernel v4.9)

● Other Open Source projects pickup and use this
● DDoS protection (PoC code for blacklist)

● Cilium (Most promising and complete solution for container)

● IOvisor/BCC - goal of creating userspace library

● Companies already using XDP:
● Facebook: DDoS + Load-balancer (10x boost vs. IPVS)

● CloudFlare: DDoS protection (waiting for SolarFlare support)

● One.com: DDoS protection

https://github.com/netoptimizer/prototype-kernel/blob/master/kernel/samples/bpf/
https://github.com/netoptimizer/prototype-kernel/blob/master/kernel/samples/bpf/xdp_ddos01_blacklist_kern.c
https://www.cilium.io/
https://github.com/iovisor/bcc
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XDP introduce: earlier packet processing stage

● Traditionally Linux Kernel Networking
● Rely on meta-data struct sk_buff (called "SKB")

● Keep state and pointers to real packet-data
● Assume most pkts reach deep into netstack (socket delivery)

● Take alloc, setup and clear cost of SKB "upfront"

● XDP change this: “new layer in network stack”

● Early parts of network stack don't need full SKB
● XDP gives access to packet-data, before the SKB is allocated

● As early as possible: hook in NIC drivers
● Via programmable interface (eBPF)
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Device driver dependency

● For high speed:
● XDP depend on drivers implement RX hook

● Luckily only software limitation

● Fairly small change to drivers, low maintenance cost
● especially compared to DPDK model of reimpl. drivers

● For ease of development: XDP "skb"-mode (v4.12)

● Allow attaching XDP programs to any net_device
● Makes it easier to devel and test XDP programs
● Runs after SKB is allocated: obviously slower

https://prototype-kernel.readthedocs.io/en/latest/blogposts/xdp25_eval_generic_xdp_tx.html
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Device drivers with Native XDP support

● Mellanox: mlx4 (v4.10) + mlx5 (v4.9)

● Netronome: nfp (v4.10)

● Virtio-net (v4.10)

● Cavium/Qlogic: qede (v4.10)

● Cavium: thunder/nicvf (v4.12)

● Broadcom: bnxt (v4.12)

● Intel: ixgbe (v4.12) + i40e (net-next)

https://prototype-kernel.readthedocs.io/en/latest/networking/XDP/implementation/drivers.html
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What is eBPF? (extended Berkeley Packet Filter)

● Originally programmable filter language for tcpdump
● 1992 by Van Jacobson and Steven McCanne

● Alexei (3.18) generalized and extended instruction set
● Introduced maps: key-value store, share-able

● eBPF: User-defined, sandboxed bytecode executed by the kernel

● Lot of eBPF activity within tracing part of kernel
● seccomp-bpf, filter syscalls (e.g. used by Docker, OpenSSH)

● eBPF in Networking, many areas already
● tcpdump + CPU steering, socket filter, iptables match module
● Traffic-Control (tc) filter and actions for ingress/egress qdisc

● Used by Cilium to speedup and secure container networking

https://twitter.com/alexei_ast
https://lkml.org/lkml/2015/4/14/232
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XDP and eBPF user programmable networking

● XDP and eBPF really good combination
● New era in user programmable networking

● Kernel side: responsible for moving packet fast

● eBPF side: maximum flexibility and opt-in
● User programmable protocol and policies
● Customers can quickly implement something

● Keeps policy choices outside kernel
● Kernel is free from maintaining this forever \o/

● Only run program code user actually need
● No accumulative feature bloat

● No need to run code everybody else once needed
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Fundamentally: XDP+eBPF gives adaptability

● XDP is also about maintainability and adapting quickly

● Customers want a long term stable kernel
● but want to newest feature today

● XDP+eBPF gives programmable policies
● Avoids creating kernel-ABI for every specific policy
● Customer can adapt, without upgrading kernel

● Gives flexibility to adjust to the unknown
● Cannot predict the future

● instead add room for adapting quickly
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eBPF as "micro-kernel" components

● Understand the architectural concept behind eBPF
● eBPF program are not real programs

● it is program snippets loaded into kernel

● See as components implementing specific behaviors
● Glue them together

●  using maps, and userspace orchestration

● Building something that looks like “micro-services”
● Just running inside the kernel

● could see it as "micro-kernel" components
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Credit: OVS conference 2016, Cilium architecture

https://www.slideshare.net/JesperDangaardBrouer/clipboards/bpf-architecture
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eBPF programming model

● Restrictions: Run code in kernel in a safe environment
● Must execute in short finite amount of time

● Memory accesses strictly controlled and verified

● No back branches allowed, and none needed due to MAPS

● eBPF byte-code is the assembler language
● Full compilers exist from C and other languages into eBPF

● Main compiler: LLVM, more interesting work coming

● eBPF maps are important

● Adjust your programming mindset
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eBPF maps: important core concept

● eBPF Maps, generic key-value store
● Can store/keep state across invocation
● Adjust programming mindset: 

● Can implement any Finite State Machine
● see: token bucket https://github.com/qmonnet/tbpoc-bpf

● Can control bpf program flow via maps
● Adjusting maps from userspace

● Maps can be shared between bpf programs
● Exported via filesystem or file-descriptor

● Easy privileged separation via file ownership permissions

https://github.com/qmonnet/tbpoc-bpf
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eBPF - JIT (Just-In-Time) compiling

● How can eBPF byte-code be fast?
● (Hint: it is not...)

● Kernel have JIT stage when loading eBPF
● Transforms byte-code into

● CPU native assembly instructions ←Hint: Very fast!

● All 64-bit architectures are done
● x86_64, arm64, ppc64, mips64, sparc64, s390x

● Smart-NICs looking at HW offloading eBPF
● Like Netronome (driver nfp)
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XDP core building blocks
● What can XDP do?

● Can read and modify packet contents
● Can push and pull headers
● eBPF trigger actions based on return codes

● XDP_DROP - very fast drop by recycling
● DDoS mitigation

● XDP_PASS – pass possibly modified packet to network stack
● Handle and pop new unknown encap protocols

● XDP_TX – Transmit packet back out same interface
● Facebook use it for load-balancing, and DDoS scrubber

● XDP_ABORTED – also drop, but indicate error condition
● Tracepoint: xdp_exception

● XDP_REDIRECT – Transmit out other NICs
● Very new (est.4.14), (plan also use for steering packets CPUs + sockets)
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Kickstarting XDP community

● Mailing list for newbies: xdp-newbies@vger.kernel.org

● Up 3 month (since April 2017 NetDevConf 2.1): 233 emails

● Placed ready to use XDP code on github
● prototype-kernel under samples/bpf/
● Associated XDP/eBPF tutorial on YouTube

● Given April 2017 at NetDevConf 2.1

● Started XDP doc project:
● https://prototype-kernel.readthedocs.io
● Cilium: “BPF and XDP Reference Guide”

● http://cilium.readthedocs.io/en/latest/bpf/
● (p.s. eBPF have own community: iovisor-dev@lists.iovisor.org)

mailto:xdp-newbies@vger.kernel.org
https://marc.info/?l=xdp-newbies
https://github.com/netoptimizer/prototype-kernel/
https://github.com/netoptimizer/prototype-kernel/tree/master/kernel/samples/bpf
https://www.youtube.com/watch?v=iBkR4gvjxtE
http://netdevconf.org/2.1/session.html?gospodarek
https://prototype-kernel.readthedocs.io/
http://cilium.readthedocs.io/en/latest/bpf/
mailto:iovisor-dev@lists.iovisor.org
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Future development and roadmap

● What are the missing features?

● What is on the roadmap?
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Just merged action: XDP_REDIRECT

● New action return code: XDP_REDIRECT
● Hope this will be last action code for drivers
● Allow steering XDP packet buffer

● First obvious use: almost like XDP_TX
● Transmit raw XDP packet out another NIC

● (Delayed tailptr write, important for performance)

● Envision: Flexibility via bpf-maps
● New redirect types, via adding new bpf map types

(Developing PoC code together with John Fastabend)
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Roadmap: Redirect to remote CPUs (1/2)

● New type of redirect to remote CPU (Just a new map type)

● Problem it is trying to solve:
● Slow (userspace) process on RX CPU cause bottleneck
● Current solutions:

● (1) RPS (Receive Packet Steering)
● Happens after SKB alloc
● Enqueue to remote CPU bottleneck 

● (2) Splitting workload via socket queue
● Still bottleneck RX CPU
● Too slow: e.g atomic mem-acct + queue management
● SKB alloc and free happens on different CPUs
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Roadmap: Redirect to remote CPUs (2/2)

● Solution: Transfer XDP packet to remote CPU
● Alloc SKB on remote CPU

● and free SKB likely on same CPU

● RX bulk and bulk transfer is key for performance
● page recycle pool facility needed for page performance

● Imply: building SKB outside driver
● Interesting for driver simplification
● Require: extra meta data to populate some SKB fields
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Missing XDP/eBPF feature+helpers: RX hash

● XDP RX hash (have PoC code)
● For correcting HW's hash to make RPS work

● RPS = Receive Packet Steering
● Seen issue with both VXLAN and Q-in-Q

● Issue: NIC placed all packets on 1-CPU
● Do XDP CPU redirect, based on flow hash

● Without touching memory!
● Basically faster version of RPS
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Missing XDP/eBPF feature+helpers: XDP mark

● XDP mark transfer to SKB→mark (have PoC code)

● Way of communicating between XDP and netstack
● Trick used today:

●  XDP add VLAN header to packet steer to net_device

● Alexei Starovoitov rejected first iteration
● Want larger/generic "mark" value/area

● Daniel Borkmann is working on this
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Missing XDP/eBPF feature+helpers: csum

● XDP checksum helpers
● Want csum bpf helpers (like for SKBs)
● Make it easier to modify packets

● Currently open-coded csum fixups in eBPF programs

● Match on HW checksum validation info
● Allow early drop on bad csums

● Info from HW-desc needed later
● When want to construct SKB outside driver
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Missing feature negotiation

● Driver XDP hook challenge: bpf helper model
● Core assume bpf helper code means feature avail
● XDP driver might not implement feature

● (like rxhash or mark)
● Particular changes to xdp_buff are challenging

● Unknown action codes not-critical
● Just fall-through to XDP_ABORTED

● Patchset send as RFC
● Top patch and followup patch

http://lkml.kernel.org/r/149512205297.14733.15729847433404265933.stgit@firesoul
http://lkml.kernel.org/r/20170530115806.3086a009@redhat.com
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Supporting eBPF based solution

● What are the challenges and support cost
● When customers start using eBPF?

● Sysadm perspective:
● Customers want support and report issues

● and might neglect to tell they are using eBPF
● Sysadm need tools to “see” what is going on
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Introspection into running eBPF progs

● Need tools for support purposes
● Introspection into running eBPF programs

● e.g basic listing of all running program

● eBPF program IDs (Got added very recently)

● XDP export this ID
● Can now identify what XDP program is running

● Expect better tools for
● Extracting eBPF code from kernel
● And better disassembly and objdump support
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XDP tracepoints

● XDP have strategic tracepoints
● Can be used for debugging exceptions

● like XDP_ABORTED and XDP_TX failures

● Can also attach eBPF to tracepoints
● Via maps, provide feedback loop to XDP program

● particular when XDP_TX/redirect overflow target

● Likely new tracepoint for
● XDP_REDIRECT to ease monitor forwarding
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End slide: Summary

● The Linux Kernel needs an in-kernel fast-path
● Bypass alternatives, is making networking an add-on

● This is bad, networking need to be a core service

● XDP is the in-kernel fast-path solution
● Part of and works in concert with existing network stack
● Lower maintenance cost, as part of the Linux Kernel
● New architecture for user programmable networking

● Userspace in drivers seat
● Via injecting "micro-kernel" components, solve specific needs
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Extra slides



XDP explained, the Camp 201734/32

Product integration

● How does XDP relates to products?
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Product integration: VMs 

● Products: OpenStack / OVS

● OpenStack Summit (Oct 2016, PlumGrid+Huawei) Video  
● Show using XDP for DDoS protection, protecting VMs

● Drop inside VM cannot keep up

● With XDP_REDIRECT:
● More direct delivery into VMs
● SDN controller

● Accelerate packet delivery via loading eBPF snippets

https://www.openstack.org/videos/video/leveraging-express-data-path-xdp-for-programmable-high-performance-data-path-in-openstack


XDP explained, the Camp 201736/32

Product integration: Containers

● Products: OpenShift / Docker

● XDP can pop and rewrite IPs
● Allows skipping some netstack layer

● With XDP_REDIRECT:
● Skip netstack layers deliver directly to container veth

● eBPF with TC ingress and egress (avail today)
● like Cilium
● can already do more direct deliver into containers
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Credit: DockerCon 2017 - Cilium

https://www.slideshare.net/JesperDangaardBrouer/clipboards/bpf-redirect-into-containers
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Product integration: Replace Network Appliances

● XDP programs on servers, instead of appliance
● serve as 'bump in the wire' to

● protect a rack of servers from DDoS attacks
● or transparent load balancing

● Drastically lower cost/Gbps than appliances

● RHEL supporting XDP enables
● Companies develop these kind of boxes
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