
Understand XDP,  이해력 XDP1/27

XDP – eXpress Data Path
An in-kernel network fast-path

A technology overview

Jesper Dangaard Brouer
Principal Kernel Engineer, Red Hat

Open Networking
Korea, Seoul

11th November 2017



Understand XDP,  이해력 XDP2/27

Introduction

● This presentation is about XDP
● XDP – eXpress Data Path

● Why Linux need it

● Making people aware of this technology
● XDP: New in-kernel building block for networking

● Explaining the building blocks of XDP
● Help understand idea behind eBPF
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What is the problem?

● Compared to bypass solutions, DPDK and netmap
● Linux kernel networking is said to be slow

● Fundamental reason: Linux build on assumption
● that most packets travel into sockets

● takes cost upfront of allocating a "socket buff" (sk_buff/SKB)

● Linux lacks an in-kernel fast-path
● DPDK bypass operate on "earlier" network layer
● Kernel lack network layer before allocating SKBs
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Why is an in-kernel fast-path needed?

● Today everything relies on networking

● Kernel provides core foundation for network
● Solutions like DPDK: make networking an add-on

● No longer part of core foundation everybody share
● DPDK require maintaining full separate drivers
● Special kernel boot parameters, 100% CPU usage
● Harder to integrate into products/solutions

● e.g. takes over entire NIC
● e.g. DPDK and containers are not compatible
● e.g. you need to reimplement a TCP/IP stack

● Need in-kernel fast-path solution, part of core
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What is XDP (eXpress Data Path)?

● XDP is an in-kernel network fast-path facility

● The "packet-page" Idea from NetDev1.1 (Feb 2016) "rebranded"
● Performance is primary focus and concern

● Yes, it is as fast as DPDK and netmap
● XDP is NOT kernel bypass

● Designed to work in concert with netstack
● "Just" an earlier packet processing stage
● Adaptive RX interrupt model (via NAPI)

● XDP run-time programmable: via eBPF

● User-defined, sandboxed bytecode executed by the kernel

https://lkml.org/lkml/2015/4/14/232
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XDP: Performance evaluation, crazy fast!!!

● Evaluated on Mellanox 40Gbit/s NICs (mlx4)
● Single CPU with DDIO performance

● 20 Mpps – Filter drop all (but read/touch data)
● 12 Mpps – TX-bounce forward (TX bulking)
● 10 Mpps – TX-bounce with udp+mac rewrite

● Single CPU without DDIO (cache-misses)
● RX cache prefetch loop trick

● 20 Mpps XDP_DROP
● TX-bounce with udp+mac rewrite:

● 8.5Mpps – cache-miss
● 12.3Mpps – RX prefetch loop trick



Understand XDP,  이해력 XDP7/27

XDP: New building block for Networking

● XDP is a core kernel facility (since kernel v4.9)
● Other Open Source projects pickup and use this

● DDoS protection (PoC code for blacklist)
● Cilium (Most promising and complete solution for container)
● IOvisor/BCC - goal create userspace library (python)

● Companies already using XDP:
● Facebook: DDoS + Load-balancer (10x boost vs. IPVS)
● CloudFlare: DDoS protection (waiting for SolarFlare support)
● One.com: DDoS protection

https://github.com/netoptimizer/prototype-kernel/blob/master/kernel/samples/bpf/
https://github.com/netoptimizer/prototype-kernel/blob/master/kernel/samples/bpf/xdp_ddos01_blacklist_kern.c
https://www.cilium.io/
https://github.com/iovisor/bcc
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XDP core building blocks
● What can XDP do?

● Can read and modify packet contents
● Can push and pull headers

● eBPF trigger actions based on return codes
● XDP_DROP - very fast drop by recycling (DDoS mitigation)
● XDP_PASS – pass possibly modified packet to network stack
● XDP_TX – Transmit packet back out same interface
● XDP_ABORTED – also drop, but indicate error via tracepoint
● XDP_REDIRECT – Transmit out other NICs or steer

● All BPF programs can also interact via
● Call helper function that lookup or modify kernel state
● Create state via shared maps (both userspace and other bpf-progs)
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XDP DDoS Open Source Community, PLEASE

● The kernel tech is ready, start community project
● Trust me, it's better to share your toys

● Point with XDP+BPF technology
● You can quickly adapt BPF code-snippets

● Hopefully quicker than attacker
● Don't wait for a vendor to update your protection-software

● Need (shared) pool of DDoS mitigation programs
● The more examples the better
● Allow up to adapt and deploy counter measures
● Be a community fighting DDoS
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XDP introduce: earlier packet processing stage

● Traditionally Linux Kernel Networking
● Rely on meta-data struct sk_buff (called "SKB")

● Keep state and pointers to real packet-data
● Assume most pkts reach deep into netstack (socket delivery)

● Take alloc, setup and clear cost of SKB "upfront"

● XDP change this: “new layer in network stack”
● Early parts of network stack don't need full SKB

● XDP gives access to packet-data, before the SKB is allocated

● As early as possible: hook in NIC drivers
● Via programmable interface (eBPF)
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Device driver dependency

● For high speed:
● XDP depend on drivers implement RX hook

● Luckily only software limitation

● Fairly small change to drivers, low maintenance cost
● especially compared to DPDK model of reimpl. drivers

● For ease of development: XDP "skb"-mode (v4.12)
● Allow attaching XDP programs to any net_device
● Makes it easier to devel and test XDP programs
● Runs after SKB is allocated: obviously slower

https://prototype-kernel.readthedocs.io/en/latest/blogposts/xdp25_eval_generic_xdp_tx.html
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Device drivers with Native XDP support

● Mellanox: mlx4 (v4.10) + mlx5 (v4.9)

● Netronome: nfp (v4.10)

● Virtio-net (v4.10)

● Cavium/Qlogic: qede (v4.10)

● Cavium: thunder/nicvf (v4.12)

● Broadcom: bnxt (v4.12)

● Intel: ixgbe (v4.12) + i40e (net-next)

https://prototype-kernel.readthedocs.io/en/latest/networking/XDP/implementation/drivers.html
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What is eBPF? (extended Berkeley Packet Filter)

● Originally programmable filter language for tcpdump
● 1992 by Van Jacobson and Steven McCanne

● Alexei (3.18) generalized and extended instruction set

● Introduced maps: key-value store, share-able
● eBPF: User-defined, sandboxed bytecode executed by the kernel

● Lot of eBPF activity within tracing part of kernel
● seccomp-bpf, filter syscalls (e.g. used by Docker, OpenSSH)

● eBPF in Networking, many areas already
● tcpdump + CPU steering, socket filter, iptables match module
● Traffic-Control (tc) filter and actions for ingress/egress qdisc

● Used by Cilium to speedup and secure container networking

https://twitter.com/alexei_ast
https://lkml.org/lkml/2015/4/14/232
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XDP + eBPF = User programmable networking

● XDP and eBPF really good combination
● New era in user programmable networking

● Kernel side: responsible for moving packet fast

● eBPF side: maximum flexibility and opt-in

● User programmable protocol and policies
● Administrators can quickly implement something

● No need to upgrade kernel
● Only run program code needed for use-case

● No accumulative feature bloat
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Fundamentally: XDP+eBPF gives adaptability

● XDP is also about maintainability and adapting quickly

● Customers want a long term stable kernel
● but want to newest feature today

● XDP+eBPF gives programmable policies
● Avoids creating kernel-ABI for every specific policy
● Customer can adapt, without upgrading kernel

● Gives flexibility to adjust to the unknown
● Cannot predict the future

● instead add room for adapting quickly
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Example: Adapting to unknown protocol

● How to handle new protocol/encapsulation
● That the kernel doesn't know yet?

● Without upgrading the running kernel!

● On RX: XDP adjust packet headers
● to something kernel understand

● E.g. steer into VLAN devices

● On TX: BPF can add back (encapsulation) headers
● With BPF hooks in Traffic Control or Socket filter

● Restore info, based on shared BPF-map
● Or based on VLAN device or SKB-marking
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eBPF as "micro-kernel" components?

● Real power comes from using multiple BPF-hooks

● Understand the architectural concept behind eBPF
● eBPF program are not real programs

● it is program snippets loaded into kernel

● See as components implementing specific behaviors
● Glue them together:
● using maps, and userspace orchestration

● Building something that looks like “micro-services”
● Just running inside the kernel

● could see it as "micro-kernel" components
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Credit: OVS conference 2016, Cilium architecture

https://www.slideshare.net/JesperDangaardBrouer/clipboards/bpf-architecture
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eBPF programming model

● Restrictions: Run code in kernel in a safe environment
● Must execute in short finite amount of time
● Memory accesses strictly controlled and verified
● No loop branches allowed, and none needed due to MAPS

● eBPF byte-code is the assembler language
● Full compilers exist from C and other languages into eBPF
● Main compiler: LLVM, more interesting work coming

● Setup of build env needed, distro support since Fedora 25

● eBPF maps are important
● Adjust your programming mindset
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eBPF maps: important core concept

● eBPF Maps, generic key-value store
● Can store/keep state across invocation
● Adjust programming mindset: 

● Can implement any Finite State Machine
● see: token bucket https://github.com/qmonnet/tbpoc-bpf

● Can control bpf program flow via maps
● Adjusting maps from userspace

● Maps can be shared between bpf programs
● Exported via filesystem, file-descriptor or map-id

● Easy privileged separation via file ownership permissions

https://github.com/qmonnet/tbpoc-bpf
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eBPF - JIT (Just-In-Time) compiling

● How can eBPF byte-code be fast?

● (Hint: it is not...)
● Kernel have JIT stage when loading eBPF

● Transforms byte-code into
● CPU native assembly instructions ←Hint: Very fast!

● All 64-bit architectures are done
● x86_64, arm64, ppc64, mips64, sparc64, s390x

● Smart-NICs looking at HW offloading eBPF
● Like Netronome (driver nfp)
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New action: XDP_REDIRECT

● New action return code: XDP_REDIRECT
● Innovative part: Redirect using maps (use bpf_redirect_map())

● Redirect via maps: RX bulking, via flush operation after napi_poll

● Dynamic adaptive bulking
● Method of adding bulking without introducing additional latency
● Bulk only frames available in driver NAPI poll loop

● New map types for redirect
● devmap - BPF_MAP_TYPE_DEVMAP

● Bulk effect via delaying HW tail/doorbell (like xmit_more)
● cpumap - BPF_MAP_TYPE_CPUMAP

● Bulk 8 frame to remote CPU, amortize cross CPU cost
● Provide CPU separation at XDP “layer”
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Introspection into running eBPF progs

● eBPF program IDs (kernel v4.13)
● XDP export this ID

● Can now identify what XDP program is running

● Tool under development named: bpftool
● Part of Kernel tree: tools/bpf/bpftool/
● Allows inspection and simple modify BPF objects
● Easy to list all programs currently loaded
● Support output in JSON format

https://git.kernel.org/pub/scm/linux/kernel/git/davem/net-next.git/tree/tools/bpf/bpf
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The XDP community

● Mailing list for newbies: xdp-newbies@vger.kernel.org
● ~6 month (since April 2017 NetDevConf 2.1): 391 emails

● Placed ready to use XDP code on github
● prototype-kernel under samples/bpf/
● Associated XDP/eBPF tutorial on YouTube

● Given April 2017 at NetDevConf 2.1

● Started XDP doc project:
● https://prototype-kernel.readthedocs.io
● Cilium: “BPF and XDP Reference Guide”

● http://cilium.readthedocs.io/en/latest/bpf/

● (p.s. eBPF have own community: iovisor-dev@lists.iovisor.org )

mailto:xdp-newbies@vger.kernel.org
https://marc.info/?l=xdp-newbies
https://github.com/netoptimizer/prototype-kernel/
https://github.com/netoptimizer/prototype-kernel/tree/master/kernel/samples/bpf
https://www.youtube.com/watch?v=iBkR4gvjxtE
http://netdevconf.org/2.1/session.html?gospodarek
https://prototype-kernel.readthedocs.io/
http://cilium.readthedocs.io/en/latest/bpf/
mailto:iovisor-dev@lists.iovisor.org


Understand XDP,  이해력 XDP25/27

XDP tracepoints

● XDP have strategic tracepoints
● Can be used for debugging exceptions

● like XDP_ABORTED and XDP_TX failures

● Can also attach eBPF to tracepoints
● Via maps, provide feedback loop to XDP program

● particular when XDP_TX/redirect overflow target

● Tracepoints exists for
● XDP_REDIRECT to ease monitor forwarding

● Sample tool avail (v4.14): xdp_monitor

https://github.com/torvalds/linux/tree/master/samples/bpf
https://github.com/netoptimizer/prototype-kernel/blob/master/kernel/samples/bpf/xdp_monitor_user.c
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End slide: Summary

● The Linux Kernel got new in-kernel fast-path
● Bypass alternatives is making networking an add-on

● This is bad, networking need to be a core service

● XDP is an in-kernel fast-path solution
● Part of and works in concert with existing network stack
● Lower maintenance cost, as part of the Linux Kernel
● New architecture for user programmable networking

● Users in driver’s seat via BPF snippets

● Don’t take over entire NIC
● BPF program as programmable filter
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Thanks to
● XDP + BPF combined effort of many people

● Alexei Starovoitov (Facebook)
● Daniel Borkmann (Covalent)
● Brenden Blanco (Vmware)
● Tom Herbert (Quantonium, former Facebook/Google)
● John Fastabend (Covalent, former Intel)
● Martin KaFai Lau (Facebook)
● Jakub Kicinski (Netronome)
● Michael S. Tsirkin (Red Hat)
● Jason Wang (Red Hat)
● Saeed Mahameed (Mellanox)
● Tariq Toukan (Mellanox)
● Edward Cree (Solarflare)
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Extra slides
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Product integration

● How does XDP relates to products?
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Product integration: VMs 

● Products: OpenStack / OVS

● OpenStack Summit (Oct 2016, PlumGrid+Huawei) Video  

● Show using XDP for DDoS protection, protecting VMs
● Drop inside VM cannot keep up

● With XDP_REDIRECT:
● More direct delivery into VMs
● SDN controller

● Accelerate packet delivery via loading eBPF snippets

https://www.openstack.org/videos/video/leveraging-express-data-path-xdp-for-programmable-high-performance-data-path-in-openstack
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Product integration: Containers

● Products: OpenShift / Docker

● XDP can pop and rewrite IPs
● Allows skipping some netstack layer

● With XDP_REDIRECT:
● Skip netstack layers deliver directly to container veth

● eBPF with TC ingress and egress (avail today)
● like Cilium
● can already do more direct deliver into containers
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Credit: DockerCon 2017 - Cilium

https://www.slideshare.net/JesperDangaardBrouer/clipboards/bpf-redirect-into-containers
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Product integration: Replace Network Appliances

● XDP programs on servers, instead of appliance
● serve as 'bump in the wire' to

● protect a rack of servers from DDoS attacks
● or transparent load balancing

● Drastically lower cost/Gbps than appliances

● RHEL supporting XDP enables
● Companies develop these kind of boxes
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