
Understand XDP, 이해력 XDP1/27

XDP – eXpress Data Path
An in-kernel network fast-path

A technology overview

Jesper Dangaard Brouer
Principal Kernel Engineer, Red Hat

Open Networking
Korea, Seoul

11th November 2017

Understand XDP, 이해력 XDP2/27

Introduction

● This presentation is about XDP
● XDP – eXpress Data Path

● Why Linux need it

● Making people aware of this technology
● XDP: New in-kernel building block for networking

● Explaining the building blocks of XDP
● Help understand idea behind eBPF

Understand XDP, 이해력 XDP3/27

What is the problem?

● Compared to bypass solutions, DPDK and netmap
● Linux kernel networking is said to be slow

● Fundamental reason: Linux build on assumption
● that most packets travel into sockets

● takes cost upfront of allocating a "socket buff" (sk_buff/SKB)

● Linux lacks an in-kernel fast-path
● DPDK bypass operate on "earlier" network layer
● Kernel lack network layer before allocating SKBs

Understand XDP, 이해력 XDP4/27

Why is an in-kernel fast-path needed?

● Today everything relies on networking

● Kernel provides core foundation for network
● Solutions like DPDK: make networking an add-on

● No longer part of core foundation everybody share
● DPDK require maintaining full separate drivers
● Special kernel boot parameters, 100% CPU usage
● Harder to integrate into products/solutions

● e.g. takes over entire NIC
● e.g. DPDK and containers are not compatible
● e.g. you need to reimplement a TCP/IP stack

● Need in-kernel fast-path solution, part of core

Understand XDP, 이해력 XDP5/27

What is XDP (eXpress Data Path)?

● XDP is an in-kernel network fast-path facility

● The "packet-page" Idea from NetDev1.1 (Feb 2016) "rebranded"
● Performance is primary focus and concern

● Yes, it is as fast as DPDK and netmap
● XDP is NOT kernel bypass

● Designed to work in concert with netstack
● "Just" an earlier packet processing stage
● Adaptive RX interrupt model (via NAPI)

● XDP run-time programmable: via eBPF

● User-defined, sandboxed bytecode executed by the kernel

https://lkml.org/lkml/2015/4/14/232

Understand XDP, 이해력 XDP6/27

XDP: Performance evaluation, crazy fast!!!

● Evaluated on Mellanox 40Gbit/s NICs (mlx4)
● Single CPU with DDIO performance

● 20 Mpps – Filter drop all (but read/touch data)
● 12 Mpps – TX-bounce forward (TX bulking)
● 10 Mpps – TX-bounce with udp+mac rewrite

● Single CPU without DDIO (cache-misses)
● RX cache prefetch loop trick

● 20 Mpps XDP_DROP
● TX-bounce with udp+mac rewrite:

● 8.5Mpps – cache-miss
● 12.3Mpps – RX prefetch loop trick

Understand XDP, 이해력 XDP7/27

XDP: New building block for Networking

● XDP is a core kernel facility (since kernel v4.9)
● Other Open Source projects pickup and use this

● DDoS protection (PoC code for blacklist)
● Cilium (Most promising and complete solution for container)
● IOvisor/BCC - goal create userspace library (python)

● Companies already using XDP:
● Facebook: DDoS + Load-balancer (10x boost vs. IPVS)
● CloudFlare: DDoS protection (waiting for SolarFlare support)
● One.com: DDoS protection

https://github.com/netoptimizer/prototype-kernel/blob/master/kernel/samples/bpf/
https://github.com/netoptimizer/prototype-kernel/blob/master/kernel/samples/bpf/xdp_ddos01_blacklist_kern.c
https://www.cilium.io/
https://github.com/iovisor/bcc

Understand XDP, 이해력 XDP8/27

XDP core building blocks
● What can XDP do?

● Can read and modify packet contents
● Can push and pull headers

● eBPF trigger actions based on return codes
● XDP_DROP - very fast drop by recycling (DDoS mitigation)
● XDP_PASS – pass possibly modified packet to network stack
● XDP_TX – Transmit packet back out same interface
● XDP_ABORTED – also drop, but indicate error via tracepoint
● XDP_REDIRECT – Transmit out other NICs or steer

● All BPF programs can also interact via
● Call helper function that lookup or modify kernel state
● Create state via shared maps (both userspace and other bpf-progs)

Understand XDP, 이해력 XDP9/27

XDP DDoS Open Source Community, PLEASE

● The kernel tech is ready, start community project
● Trust me, it's better to share your toys

● Point with XDP+BPF technology
● You can quickly adapt BPF code-snippets

● Hopefully quicker than attacker
● Don't wait for a vendor to update your protection-software

● Need (shared) pool of DDoS mitigation programs
● The more examples the better
● Allow up to adapt and deploy counter measures
● Be a community fighting DDoS

Understand XDP, 이해력 XDP10/27

XDP introduce: earlier packet processing stage

● Traditionally Linux Kernel Networking
● Rely on meta-data struct sk_buff (called "SKB")

● Keep state and pointers to real packet-data
● Assume most pkts reach deep into netstack (socket delivery)

● Take alloc, setup and clear cost of SKB "upfront"

● XDP change this: “new layer in network stack”
● Early parts of network stack don't need full SKB

● XDP gives access to packet-data, before the SKB is allocated

● As early as possible: hook in NIC drivers
● Via programmable interface (eBPF)

Understand XDP, 이해력 XDP11/27

Device driver dependency

● For high speed:
● XDP depend on drivers implement RX hook

● Luckily only software limitation

● Fairly small change to drivers, low maintenance cost
● especially compared to DPDK model of reimpl. drivers

● For ease of development: XDP "skb"-mode (v4.12)
● Allow attaching XDP programs to any net_device
● Makes it easier to devel and test XDP programs
● Runs after SKB is allocated: obviously slower

https://prototype-kernel.readthedocs.io/en/latest/blogposts/xdp25_eval_generic_xdp_tx.html

Understand XDP, 이해력 XDP12/27

Device drivers with Native XDP support

● Mellanox: mlx4 (v4.10) + mlx5 (v4.9)

● Netronome: nfp (v4.10)

● Virtio-net (v4.10)

● Cavium/Qlogic: qede (v4.10)

● Cavium: thunder/nicvf (v4.12)

● Broadcom: bnxt (v4.12)

● Intel: ixgbe (v4.12) + i40e (net-next)

https://prototype-kernel.readthedocs.io/en/latest/networking/XDP/implementation/drivers.html

Understand XDP, 이해력 XDP13/27

What is eBPF? (extended Berkeley Packet Filter)

● Originally programmable filter language for tcpdump
● 1992 by Van Jacobson and Steven McCanne

● Alexei (3.18) generalized and extended instruction set

● Introduced maps: key-value store, share-able
● eBPF: User-defined, sandboxed bytecode executed by the kernel

● Lot of eBPF activity within tracing part of kernel
● seccomp-bpf, filter syscalls (e.g. used by Docker, OpenSSH)

● eBPF in Networking, many areas already
● tcpdump + CPU steering, socket filter, iptables match module
● Traffic-Control (tc) filter and actions for ingress/egress qdisc

● Used by Cilium to speedup and secure container networking

https://twitter.com/alexei_ast
https://lkml.org/lkml/2015/4/14/232

Understand XDP, 이해력 XDP14/27

XDP + eBPF = User programmable networking

● XDP and eBPF really good combination
● New era in user programmable networking

● Kernel side: responsible for moving packet fast

● eBPF side: maximum flexibility and opt-in

● User programmable protocol and policies
● Administrators can quickly implement something

● No need to upgrade kernel
● Only run program code needed for use-case

● No accumulative feature bloat

Understand XDP, 이해력 XDP15/27

Fundamentally: XDP+eBPF gives adaptability

● XDP is also about maintainability and adapting quickly

● Customers want a long term stable kernel
● but want to newest feature today

● XDP+eBPF gives programmable policies
● Avoids creating kernel-ABI for every specific policy
● Customer can adapt, without upgrading kernel

● Gives flexibility to adjust to the unknown
● Cannot predict the future

● instead add room for adapting quickly

Understand XDP, 이해력 XDP16/27

Example: Adapting to unknown protocol

● How to handle new protocol/encapsulation
● That the kernel doesn't know yet?

● Without upgrading the running kernel!

● On RX: XDP adjust packet headers
● to something kernel understand

● E.g. steer into VLAN devices

● On TX: BPF can add back (encapsulation) headers
● With BPF hooks in Traffic Control or Socket filter

● Restore info, based on shared BPF-map
● Or based on VLAN device or SKB-marking

Understand XDP, 이해력 XDP17/27

eBPF as "micro-kernel" components?

● Real power comes from using multiple BPF-hooks

● Understand the architectural concept behind eBPF
● eBPF program are not real programs

● it is program snippets loaded into kernel

● See as components implementing specific behaviors
● Glue them together:
● using maps, and userspace orchestration

● Building something that looks like “micro-services”
● Just running inside the kernel

● could see it as "micro-kernel" components

Understand XDP, 이해력 XDP18/27

Credit: OVS conference 2016, Cilium architecture

https://www.slideshare.net/JesperDangaardBrouer/clipboards/bpf-architecture

Understand XDP, 이해력 XDP19/27

eBPF programming model

● Restrictions: Run code in kernel in a safe environment
● Must execute in short finite amount of time
● Memory accesses strictly controlled and verified
● No loop branches allowed, and none needed due to MAPS

● eBPF byte-code is the assembler language
● Full compilers exist from C and other languages into eBPF
● Main compiler: LLVM, more interesting work coming

● Setup of build env needed, distro support since Fedora 25

● eBPF maps are important
● Adjust your programming mindset

Understand XDP, 이해력 XDP20/27

eBPF maps: important core concept

● eBPF Maps, generic key-value store
● Can store/keep state across invocation
● Adjust programming mindset:

● Can implement any Finite State Machine
● see: token bucket https://github.com/qmonnet/tbpoc-bpf

● Can control bpf program flow via maps
● Adjusting maps from userspace

● Maps can be shared between bpf programs
● Exported via filesystem, file-descriptor or map-id

● Easy privileged separation via file ownership permissions

https://github.com/qmonnet/tbpoc-bpf

Understand XDP, 이해력 XDP21/27

eBPF - JIT (Just-In-Time) compiling

● How can eBPF byte-code be fast?

● (Hint: it is not...)
● Kernel have JIT stage when loading eBPF

● Transforms byte-code into
● CPU native assembly instructions ←Hint: Very fast!

● All 64-bit architectures are done
● x86_64, arm64, ppc64, mips64, sparc64, s390x

● Smart-NICs looking at HW offloading eBPF
● Like Netronome (driver nfp)

Understand XDP, 이해력 XDP22/27

New action: XDP_REDIRECT

● New action return code: XDP_REDIRECT
● Innovative part: Redirect using maps (use bpf_redirect_map())

● Redirect via maps: RX bulking, via flush operation after napi_poll

● Dynamic adaptive bulking
● Method of adding bulking without introducing additional latency
● Bulk only frames available in driver NAPI poll loop

● New map types for redirect
● devmap - BPF_MAP_TYPE_DEVMAP

● Bulk effect via delaying HW tail/doorbell (like xmit_more)
● cpumap - BPF_MAP_TYPE_CPUMAP

● Bulk 8 frame to remote CPU, amortize cross CPU cost
● Provide CPU separation at XDP “layer”

Understand XDP, 이해력 XDP23/27

Introspection into running eBPF progs

● eBPF program IDs (kernel v4.13)
● XDP export this ID

● Can now identify what XDP program is running

● Tool under development named: bpftool
● Part of Kernel tree: tools/bpf/bpftool/
● Allows inspection and simple modify BPF objects
● Easy to list all programs currently loaded
● Support output in JSON format

https://git.kernel.org/pub/scm/linux/kernel/git/davem/net-next.git/tree/tools/bpf/bpf

Understand XDP, 이해력 XDP24/27

The XDP community

● Mailing list for newbies: xdp-newbies@vger.kernel.org
● ~6 month (since April 2017 NetDevConf 2.1): 391 emails

● Placed ready to use XDP code on github
● prototype-kernel under samples/bpf/
● Associated XDP/eBPF tutorial on YouTube

● Given April 2017 at NetDevConf 2.1

● Started XDP doc project:
● https://prototype-kernel.readthedocs.io
● Cilium: “BPF and XDP Reference Guide”

● http://cilium.readthedocs.io/en/latest/bpf/

● (p.s. eBPF have own community: iovisor-dev@lists.iovisor.org)

mailto:xdp-newbies@vger.kernel.org
https://marc.info/?l=xdp-newbies
https://github.com/netoptimizer/prototype-kernel/
https://github.com/netoptimizer/prototype-kernel/tree/master/kernel/samples/bpf
https://www.youtube.com/watch?v=iBkR4gvjxtE
http://netdevconf.org/2.1/session.html?gospodarek
https://prototype-kernel.readthedocs.io/
http://cilium.readthedocs.io/en/latest/bpf/
mailto:iovisor-dev@lists.iovisor.org

Understand XDP, 이해력 XDP25/27

XDP tracepoints

● XDP have strategic tracepoints
● Can be used for debugging exceptions

● like XDP_ABORTED and XDP_TX failures

● Can also attach eBPF to tracepoints
● Via maps, provide feedback loop to XDP program

● particular when XDP_TX/redirect overflow target

● Tracepoints exists for
● XDP_REDIRECT to ease monitor forwarding

● Sample tool avail (v4.14): xdp_monitor

https://github.com/torvalds/linux/tree/master/samples/bpf
https://github.com/netoptimizer/prototype-kernel/blob/master/kernel/samples/bpf/xdp_monitor_user.c

Understand XDP, 이해력 XDP26/27

End slide: Summary

● The Linux Kernel got new in-kernel fast-path
● Bypass alternatives is making networking an add-on

● This is bad, networking need to be a core service

● XDP is an in-kernel fast-path solution
● Part of and works in concert with existing network stack
● Lower maintenance cost, as part of the Linux Kernel
● New architecture for user programmable networking

● Users in driver’s seat via BPF snippets

● Don’t take over entire NIC
● BPF program as programmable filter

Understand XDP, 이해력 XDP27/27

Thanks to
● XDP + BPF combined effort of many people

● Alexei Starovoitov (Facebook)
● Daniel Borkmann (Covalent)
● Brenden Blanco (Vmware)
● Tom Herbert (Quantonium, former Facebook/Google)
● John Fastabend (Covalent, former Intel)
● Martin KaFai Lau (Facebook)
● Jakub Kicinski (Netronome)
● Michael S. Tsirkin (Red Hat)
● Jason Wang (Red Hat)
● Saeed Mahameed (Mellanox)
● Tariq Toukan (Mellanox)
● Edward Cree (Solarflare)

Understand XDP, 이해력 XDP28/27

Extra slides

Understand XDP, 이해력 XDP29/27

Product integration

● How does XDP relates to products?

Understand XDP, 이해력 XDP30/27

Product integration: VMs

● Products: OpenStack / OVS

● OpenStack Summit (Oct 2016, PlumGrid+Huawei) Video

● Show using XDP for DDoS protection, protecting VMs
● Drop inside VM cannot keep up

● With XDP_REDIRECT:
● More direct delivery into VMs
● SDN controller

● Accelerate packet delivery via loading eBPF snippets

https://www.openstack.org/videos/video/leveraging-express-data-path-xdp-for-programmable-high-performance-data-path-in-openstack

Understand XDP, 이해력 XDP31/27

Product integration: Containers

● Products: OpenShift / Docker

● XDP can pop and rewrite IPs
● Allows skipping some netstack layer

● With XDP_REDIRECT:
● Skip netstack layers deliver directly to container veth

● eBPF with TC ingress and egress (avail today)
● like Cilium
● can already do more direct deliver into containers

Understand XDP, 이해력 XDP32/27

Credit: DockerCon 2017 - Cilium

https://www.slideshare.net/JesperDangaardBrouer/clipboards/bpf-redirect-into-containers

Understand XDP, 이해력 XDP33/27

Product integration: Replace Network Appliances

● XDP programs on servers, instead of appliance
● serve as 'bump in the wire' to

● protect a rack of servers from DDoS attacks
● or transparent load balancing

● Drastically lower cost/Gbps than appliances

● RHEL supporting XDP enables
● Companies develop these kind of boxes

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33

