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Abstract
This  paper  will  discuss  distributing  the  Linux  Traffic  Control 
(TC) Classifier-Action(CA) subsystem packet processing across 
disparate  nodes.  The  nodes  could  be  a  mix  and  match  of 
containers, VMs, bare metal machines or ASICs.  
A  new  tc  Inter-Forwarding  Engine  (IFE)  action  is  introduced 
based on IETF ForCES WG[1] Inter-FE LFB[2] work . The paper 
will go into both the implementation as well as the usage of the  
IFE tc action. Details on how to add new extensions to the IFE 
action will also be discussed.  
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 Introduction

The  Linux  Traffic  Control  Classifier-Action(CA) 
subsystem[3] provides a flexible way to compose packet 
treatment  policies.  A  control  application  (such  as  the 
iproute2  tc utility)  defines  a  policy   in  the  form of  an 
instance of a directed graph which constitutes a mix and 
match of filter and action instances through which selected 
packets traverse - with an end goal of achieving a specified 
packet service.  

Figure 1 visualizes an arbitrary TC classifier-action policy 
graph  which  we  will  use  for  the  purpose  of  providing 
context of our discussion.

Each graph vertex/node represents either a classifier or an 
action instance and the directed graph edges are  labeled 
with a P to imply packet data and an M to imply metadata.
A policy graph is typically anchored at either the ingress or 
egress of a port1. Figure 1 ignores where the anchor point 
resides, again for the sake of illustration.
Packet data maybe edited (grown or shrunk) or consumed 
at any graph vertex. Packet metadata may be produced or 
consumed as well at the different vertices.
Figure 1 illustrates highlights a few architectural constructs 
of the CA subsystem[3]:

• Vertex  B  generates,  alongside  the  packet  data 
metadata  providing  additional  details  to  the 
vertices downstream. Metadata may have local or 
global significance dictating its longevity. Locally 
significant  metadata  (such  as  the  skb  cb[] 
construct)  may  only  last  one  vertex  hop  before 
being consumed or loosing its semantics. Globally 
significant metadata (eg the skb mark metadatum) 
could be modified at vertices along the way.

• The  ability  to  branch  is  demonstrated  at  both 
vertices B and D in figure 1; at each graph vertex 
traversed  that  is  capable  of  branching,  a  path 
decision is computed based on headers, metadata 
or stored state. 

Note that a CA pipeline may be terminated at any point in 
the  graph  (example  when  a  packet  is  queued  or  state 
dictates it is to be dropped etc). Also not illustrated is the 
fact a CA graph may contain  loops. 
A packet enters the graph in figure 1 at vertex A, which is 
always a classifier. The packet continues its journey from 
vertex A to vertex B. The packet exits, possibly modified 
or delayed at the policy graph terminal vertex F, without 
metadata (just as it came in).
For more details the reader is referred to [3].

In the next sections we will describe why one would want 
to distribute the graph such as the one in figure 1. We will 
then  introduce  the  Inter-FE(IFE)  action,  the  wire  format 
used and the processing algorithms used. We will explore a 
few simple policies which make use of the IFE action and 
proceed  to  describe  some  of  the  challenges  we  had  to 
overcome.  Finally  we are  going to  describe  how to add 
extensions to  the IFE action.  In  conclusion we will  talk 
about future work we are intending to pursue.

1 Essentially a Linux netdev abstraction.

Figure  1:  Packet  Processing  Policy  Graph  
Instance
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Distributing A Policy Graph
Often times there is need to take a specific instance of a 
packet  policy  and  distribute  it  across  processing  node 
boundaries. The need for crossing node boundaries is often 
driven by a desire to scale a packet service horizontally, 
but  sometimes  by  need  to  interact  with  specialized 
processing  (look-aside  offload  engines  such  as  crypto, 
TCAMs  etc)  or  exception  handling  (packets  requiring 
further inspection or treatment by specialized nodes such 
as controllers or service nodes). 

Figure 2 shows an equivalent graph to the one in figure 1 
but split across two processing nodes. 

In  order  for  the  two  graphs  to  be  equivalent,  two 
requirements need to be met:

1. The  distributed  version  needs  to  be  able  to 
propagate  necessary  metadata  across  processing 
nodes.  This  is  achieved  by  introducing  the  IFE 
action which is the topic of this paper.

2. The  number  of  input  and  output  edges  to  each 
vertex  stays  unchanged  (implying  the 
implementation does not change).

Introducing The IFE action
The IFE action plays the role of a graph connector.

A source IFE instance(S in figure 2) is placed at the egress 
of  a  source  processing  node  port  and  another  at  a 
downstream processing node's ingress port(D in figure 2) 
as illustrated in figure 2.

The egress IFE instance is instructed to take metadata as 
defined by policy and relay to the destination node. The 
ingress  IFE  is  programmed  to  accept  policy-specified 
metadata and pass it on the next vertex in the graph.

Figure 3 shows how the IFE data is encapsulated within 
ethernet frames.

Egress processing
As illustrated  in  figure  3,  the  original  ethernet  frame  is 
encapsulated inside the new ethernet frame, in addition:

• The original ethernet headers (source, destination 
MAC address and optional vlan information) may 
be used for the outer header or maybe over written 
with new programmed values.
◦ The outer destination MAC address identifies 

the intended destination processing node.
◦ The outer source MAC address provides the 

identity  needed  for  the  source  processing 
node.

◦ The optional VLAN tag information may be 
present  if  the  original  ethernet  header  had 
vlan information.

• Programmed metadatum are encapsulated, each in 
its own TLV. The 16 bit  type field of the TLV 
uniquely identifies each transported metadatum.

• The total metadata size (including 16 bits for the 
length header) is included in the Metadata Length 
field.

• A standard 16 bit ether type field is set to a value 
recognized for IFE. The default value is 0xFEFE2.

Allowed  metadata  (as  specified  by  policy)  to  be 
encapsulated is selected in one of two ways:

1. Extracted from the skb or other kernel constructs 
(eg conntrack details) at runtime. The policy-data 
must specify that the specific metadatum is to be 
allowed.

2. Statically  set  at  configuration  time.  Statically 
provisioned  metadata  values  override  runtime 
values.  Refer  to the egress processing algorithm 
below for details.

The egress processing algorithm is as follows:

• Increment action instance statistics for packet and 
byte count observed.

• Apply runtime metadata against the programmed 
metadata filter list.  If no legitimate metadata is 
found that  needs to be passed downstream, then 
increment stats (the  overlimits stat  is abused for 
this purpose) and the packet is allowed through as 
is. 

• Create  the  outer  ethernet  header  which  is  a 
duplicate of the incoming frame's ethernet header. 
The outer ethernet  header may have an optional 
802.1q header (if one was included in the original 
frame). Set the ether type to 0xFEFE.

• If  the  policy  specifies  the  optional  destination 
MAC address, use it.

• If the policy specifies  the optional  source MAC 
address, use it.

2 Value  selected  to  symbolize  FE to  FE node 
encapsulation. 

Figure 2: Distribute Policy Graph Across 2 Nodes

Figure 3: Inter-FE Ethernet Encapsulation
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• If the policy-data specifies the optional ether type, 
override  the  current  (0xFEFE)  value  with  the 
specified value.

• Walk  the  policy  metadata  filter  list  again.  For 
each  metadata  specified,  either  encapsulate  the 
runtime metadata or the specified static value.

• Note:  At  any  steps  above  should  an  error  be 
detected, increment the error stats and ask for the 
packet to be dropped

Listing 1 below shows a sample tc policy for encoding Iat 
an FE on a source processing node instance. The listing is 
intended to illustrate features as opposed to being practical.

Listing 1: IFE action egress sample policy

The policy-data specifies to:

• use  an  ether  type  of  0xDEAD to  override  the 
default 0xFEFE.

• Override  the  source(src)  and  destination(dst) 
MAC addresses.

• Use (i.e encode) the runtime skb->mark value.

• Ignore the  skb hash. Instead send to the remote 
node an encapsulated value of 10. In other words 
the runtime value of the skb hash is over-ridden 
by the static policy defined value.

• Ignore the runtime  skb queue map and instead 
always encapsulate a value of 17.

• Pass an arbitrary string metadata not related to 
any kernel structures a value of “foobar”. This is 
an  example  of  how  one  would  program  an 
arbitrary metadata value.

When  the  IFE  action  completes,  the  next  action  or 
classifier in the graph is traversed (typically this would be 
a mirred action[3] to redirect a packet to another port or a 
vlan action to add a vlan tag to a packet etc).

Ingress processing
The  target  destination  node  receives  IFE-encapsulated 
packets at its ingress as shown in figure 2.

The  IFE ethernet  frame  is  recognized  by  its  ether  type. 
Either the default 0xFEFE is observed or a different value 

that is agreed on is used(in which case an administrator or 
controller would program both ends). 

The ingress processing algorithm is as follows:

• Increment  statistics  for  packet  and  byte  count 
observed. 

• Parse  the  metadata  list  and  for  each  of  the 
metadata  received  compare  against  the  allowed 
metadata list

◦ If  the  metadatum is  allowed,  extract  it  and 
install it (typically on an skb, but could be on 
other structs etc).

◦ If  the  metadatum  is  recognized  but  not 
allowed  or  content  is  malformed  increment 
stats and ignore.

◦ If the metadatum is not recognized ignore it 
but  increment  stats  (overlimits  stats  are 
abused for this).

• Consume the outer header.

• Note: At any steps above should an error(such as 
malformed  metadata)  be  detected  increment  the 
error stats and ask for the packet to be dropped.

When  the  ingress  processing  completes  the  packet  and 
restored metadata are passed to the next action or classifier 
in the policy definition or simply up the network stack.

Listing 2: IFE action ingress sample policy

Listing 2 shows a sample ingress policy. A higher priority 
filter rule using the u32 classifier is encountered first by 
the packet. The filter looks for the ether protocol 0xDEAD 
and ignores any other packet headers  (u32 0 0 construct).  
When it is matched, the ife action is invoked to decode the 
IFE data encapsulated.

The policy in this case is only interested in the  skb mark 
field (allow mark construct). If the mark is observed within 
the IFE encapsulated data, it is extracted and its value set 
on  the  skb  mark field.   The  packet  is  then  run  via  the 
classifiers again (as per policy construct reclassify[3]).

The second classification is done by the fw classifier (first 
one  to  match  ethernet  protocol ip).  This  classifier  upon 
matching the  skb mark value 0x11, would pass control to 
the next action in the graph if indeed the IFE action had 
earlier extracted mark value of 0x11.

tc filter add dev $ETH parent 1: protocol ip prio 10 \ 
u32 match ip protocol 1 0xff flowid 1:2 \ 
action … action … \
action ife encode type 0xDEAD \ 
allow mark use hash 10 use qmap 17 \
use mystring “foobar” \
dst 02:00:00:22:01:01 src 52:54:00:c3:4b:c5 \
action ...

tc filter add dev $ETH parent ffff: prio 2 protocol 0xdead \ 
u32 match u32 0 0 flowid 1:1 \
action ife decode allow mark reclassify 
tc filter add dev $ETH parent ffff: prio 5 protocol ip \ 
handle 0x11 fw flowid 1:1 action …..
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Overcoming Challenges
It  would  not  be  fun  if  we  did  not  have  challenges  to 
overcome.

MTU Challenges

The diligent reader would immediately notice that the IFE 
action would enlarge the ethernet frame. This could cause 
MTU issues. To address this:

• Limit  the  amount  of  metadata  that  could  be 
transmitted  to  fit  within  an  MTU.  We  have  a 
flexible implementation which allows filtering on 
what metadata goes on the wire3. 

• Use  large  MTUs  when  possible  (example  with 
jumbo frames). 

◦ Note: Given that the IFE action is expected to 
operate within the realm of Layer 2 and will 
deal  with  virtual  environments,  we  expect 
large MTUs will be a common setup4.

Ethernet Type Challenges

While we expect to use a unique IEEE-issued ether type 
for the inter-FE traffic, we use lessons learnt from VXLAN 
deployment to be more flexible on the settings of the ether 
type  value  used.   Linux  VXLAN  implementation  uses 
UDP port  8472 because  the deployment  happened much 
earlier than the point of RFC publication which prompted 
IANA to assign udp port  4789.  For this reason we make it 
possible to define, at control time, what ether type to use 
and default to the IEEE issued ether type.  We justify this 
by assuming that a given setup is likely to be owned by a 
single  organization  and  that  the  organization's 
administrator  or  controller  would  be  responsible  to 
program all participating processing nodes.

Metadata IDs

While the ForCES approach is to standardize the metaids 
(Including  leaving  some  space  for  private  use),  in  an 
organization under the same administrator it is possible to 
just standardize on a private space.

Metadata Propagated

A few obvious skb metadata are currently supported. These 
are:

• 32-bit skb  mark (optionally with a 32-bit mask). 
Metadata id 1

• 32-bit skb prio. Metadata id 3

3 Administrators  for  ethernet-extending  protocols 
commonly set  the egress  MTUs to be just enough to 
allow  for  allowed  maximum  wire  size  minus  extra 
space needed. Care needs to be taken to not go too low 
(leave about 576B for IPV4 and 1260B for IPV6) 

4 The MTU for loopback device on my laptop is 64K. 
And just as large for veth.

• 16-bit skb queue mapping. Metadata id 4

• 32-bit skb hash. Metadata id 2

The IFE action is designed to offer a simple interface to 
add more types of metadata that can be transmitted across 
inter-forwarding  boundaries  as  demonstrated  in  the  next 
section. 

Extending The IFE action
A core feature of the IFE action is to allow easy addition of 
metadata  handling  in  the  kernel.  To  this  end  we  have 
provided a simplified kernel module API. 

The module api provides methods for:

• checking  presence  of  the  metadata  via 
check_presence() method. This method would be 
the  one  that  decides  where  to  retrieve  the 
metadata value from a runtime value or to use a 
statically defined policy value.

• Metadata  encoding  on  egress  via  encode() 
method.

• Metadata  decoding  on  ingress  via  decode() 
method.

• Encoding  the  metadata  when  the  control  side 
requests for it via the get() method.

• Allocating space for the metadata via the  alloc() 
method.

• Freeing  of  the  metadata  space  via  the  release() 
method.

The  module  author  is  expected  to  be  able  to  present 
implementations  for  the  above  methods.  For  basic 
metadata like 32 or 16 bit definitions, we provide some of 
the basic utility functions. 

Listing 3 shows a sample use of the metadata methods for 
the skb hash metadata. 

The development of a metadata extension involves:

• The  user  specifies  a  struct  tcf_meta_ops and 
datafills it with all the required details (ops etc).

• The user implements the methods/ops required.

• At  module  initialization,  register  the  struct 
tcf_meta_ops using register_ife_op() API call.
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Listing 3: skb hash metadata operations

At runtime on an egress node, when the metadata filter list  
indicates  a  specific  metadata  is  allowed,  then its  encode 
method is invoked. Listing 4 shows the encode method for 
the skb hash metadatum.

Listing 4: The encode method for  skb hash

At runtime on an  ingress  node,  when a  policy metadata 
filter list indicates a specific metadata(found encapsulated 
in the received packet) is allowed, then its decode method 
is invoked. 
Listing  5  shows  the  decode  method  for  the  skb  hash 
metadatum.

Listing 5: skb hash decode method

The reader is referred to the kernel code for the IFE action 
for more samples and fine-grained details.

Offloading IFE
It  is  possible  to  write  extensions  that  take  existing 
hardware metadata carrying approaches such as Broadcom 
Higig[5] and map them to IFE metadata thus extending the 
policy graph across ASICs.

We believe that the IFE metadata sourcing and termination 
is  easy  to  implement  in  hardware.  A  smart  NIC  at  a 
receiving path, essentially parses the metadata and makes it 
available  via dma descriptors  ready for  consumption via 
the stack. 

Sample use Cases
There are many possible use cases for distributing a policy 
graph as described earlier. 

Pipeline-stage Indexing
An  earlier  motivation  for  us  was  to  scale  packet 
processing.  So  we  use  metadata  to  carry  pipeline-stage 
indexing  information  for  systolic  packet  processing 
reasons.

You start with a single processing node and then as your 
performance  needs  grow  you  split  the  functionality  into 
multiple machines thus horizontally scaling. In such a case 
the  processing  pipeline  is  built  such  that  the  more 
expensive functionality is parallelized.

Figure 3 shows how to scale a policy graph into pipelines 
across  additional  processing  using the  IFE action  as  the 
split point. Each east-bound node is identified via its MAC 
address of the receiving port.

The reverse direction also uses the IFE action as the merge 
point.

Other use Cases
The  flexibility  provided  by  the  IFE  action  offers  more 
opportunities. A few examples of metadata that could be 
attached for a variety of processing:

• OAM information – example turn on some packet 
debug information on a need basis.

static struct tcf_meta_ops ife_hash_ops = { 
        .metaid = IFE_META_HASHID, 
        .name = "skbhash", 
        .check_presence = skbhash_check, 
        .encode = skbhash_encode, 
        .decode = skbhash_decode, 
        .get = get_meta_u32, 
        .alloc = alloc_meta_u32, 
        .release = release_meta_uxx, 
        .owner = THIS_MODULE, 
}; 
static int __init ifeprio_init_module(void) 
{ 
return register_ife_op(&ife_hash_ops); 
} 

int  skbhash_encode(struct  sk_buff  *skb,  void  *skbdata,  
struct tcf_meta_info *e) 
{ 
        u32 skbhash = skb->hash; 
        if (e->metaval) { /* use static value */
                skbhash = *(u32 *)e->metaval; 
        } 
        if (!skbhash) 
                return 0; 
        skbhash = htonl(skbhash); 
        return tlv_encode(skbdata, e->metaid, 4, &skbhash); 
} 

int skbhash_decode(struct sk_buff *skb, void *data,  u16 len) 
{ 
         u32 shash = *(u32 *) data; 
        shash = ntohl(shash); 
        skb->hash = shash; 
        return 0; 
} 

Figure 4: Scaling by Splitting
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• Exception  handling  information  –  example 
VXLAN service handling.

• Authentication and authorization information.

• Versioning information.

• Compliance information.

• Service Identifiers.

Integrating In A Controller Environment
We  have  illustrated  how  one  would  control  the  IFE 
policies over standard  tc cli tooling. However,  this could 
get  cumbersome  as  the  number  of  nodes  grows  (very 
extreme when you start using containers). For this reason it 
would make sense to automate the process with the use of 
a centralized controller. 

To that end we have implemented policy control involving 
the IFE and other graph nodes via the ForCES architecture. 
The  IFE  action  is  modeled  as  a  ForCES  LFB(Logical 
Functional Block).

Future Work
We have not yet  done good performance measurements. 
We do  expect  to  see  slight  increases  in  latency  when a 
processing  graph  is  split  across  nodes,  but  believe  the 
overhead  will  be  small  due  to  the  fact  we  are  running 
directly over ethernet. We will be publishing performance 
numbers in the future.

We plan  to  prototype  hardware  offloading  ideas  via  the 
rocker[4] device or an offloaded network processor.

We  are  also  exploring  ways  to  extend  usability  at  user 
space tc level of the metadata control such that simple new 
metadata extensions do not require any code changes in the 
tc utility.

Clearly,  for  sanity  of  inter  operation,  standardization  is 
needed.  Our  intention  is  to  be  able  to,  in  the  future, 
discover these metaid values by querying the kernel;  for 
now we have specified our own Linux values as shown in 
the next section.
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