
Distributing Linux Traffic Control Classifier-Action Subsystem

Jamal Hadi Salim and Damascene M. Joachimpillai

Mojatatu Networks, Verizon
Ottawa, Ont., Canada and Waltham, Mass., USA

hadi@mojatatu.com, dj@verizon.com

Abstract
This paper will discuss distributing the Linux Traffic Control
(TC) Classifier-Action(CA) subsystem packet processing across
disparate nodes. The nodes could be a mix and match of
containers, VMs, bare metal machines or ASICs.
A new tc Inter-Forwarding Engine (IFE) action is introduced
based on IETF ForCES WG[1] Inter-FE LFB[2] work . The paper
will go into both the implementation as well as the usage of the
IFE tc action. Details on how to add new extensions to the IFE
action will also be discussed.

Keywords
Linux, tc, filters, actions, qdisc, packet processing, ForCES,
Software Defined Networking, iproute2, kernel

 Introduction

The Linux Traffic Control Classifier-Action(CA)
subsystem[3] provides a flexible way to compose packet
treatment policies. A control application (such as the
iproute2 tc utility) defines a policy in the form of an
instance of a directed graph which constitutes a mix and
match of filter and action instances through which selected
packets traverse - with an end goal of achieving a specified
packet service.

Figure 1 visualizes an arbitrary TC classifier-action policy
graph which we will use for the purpose of providing
context of our discussion.

Each graph vertex/node represents either a classifier or an
action instance and the directed graph edges are labeled
with a P to imply packet data and an M to imply metadata.
A policy graph is typically anchored at either the ingress or
egress of a port1. Figure 1 ignores where the anchor point
resides, again for the sake of illustration.
Packet data maybe edited (grown or shrunk) or consumed
at any graph vertex. Packet metadata may be produced or
consumed as well at the different vertices.
Figure 1 illustrates highlights a few architectural constructs
of the CA subsystem[3]:

• Vertex B generates, alongside the packet data
metadata providing additional details to the
vertices downstream. Metadata may have local or
global significance dictating its longevity. Locally
significant metadata (such as the skb cb[]
construct) may only last one vertex hop before
being consumed or loosing its semantics. Globally
significant metadata (eg the skb mark metadatum)
could be modified at vertices along the way.

• The ability to branch is demonstrated at both
vertices B and D in figure 1; at each graph vertex
traversed that is capable of branching, a path
decision is computed based on headers, metadata
or stored state.

Note that a CA pipeline may be terminated at any point in
the graph (example when a packet is queued or state
dictates it is to be dropped etc). Also not illustrated is the
fact a CA graph may contain loops.
A packet enters the graph in figure 1 at vertex A, which is
always a classifier. The packet continues its journey from
vertex A to vertex B. The packet exits, possibly modified
or delayed at the policy graph terminal vertex F, without
metadata (just as it came in).
For more details the reader is referred to [3].

In the next sections we will describe why one would want
to distribute the graph such as the one in figure 1. We will
then introduce the Inter-FE(IFE) action, the wire format
used and the processing algorithms used. We will explore a
few simple policies which make use of the IFE action and
proceed to describe some of the challenges we had to
overcome. Finally we are going to describe how to add
extensions to the IFE action. In conclusion we will talk
about future work we are intending to pursue.

1 Essentially a Linux netdev abstraction.

Figure 1: Packet Processing Policy Graph
Instance

Proceedings of netdev 0.1, Feb 14-17, 2015, Ottawa, On, Canada

mailto:hadi@mojatatu.com

Distributing A Policy Graph
Often times there is need to take a specific instance of a
packet policy and distribute it across processing node
boundaries. The need for crossing node boundaries is often
driven by a desire to scale a packet service horizontally,
but sometimes by need to interact with specialized
processing (look-aside offload engines such as crypto,
TCAMs etc) or exception handling (packets requiring
further inspection or treatment by specialized nodes such
as controllers or service nodes).

Figure 2 shows an equivalent graph to the one in figure 1
but split across two processing nodes.

In order for the two graphs to be equivalent, two
requirements need to be met:

1. The distributed version needs to be able to
propagate necessary metadata across processing
nodes. This is achieved by introducing the IFE
action which is the topic of this paper.

2. The number of input and output edges to each
vertex stays unchanged (implying the
implementation does not change).

Introducing The IFE action
The IFE action plays the role of a graph connector.

A source IFE instance(S in figure 2) is placed at the egress
of a source processing node port and another at a
downstream processing node's ingress port(D in figure 2)
as illustrated in figure 2.

The egress IFE instance is instructed to take metadata as
defined by policy and relay to the destination node. The
ingress IFE is programmed to accept policy-specified
metadata and pass it on the next vertex in the graph.

Figure 3 shows how the IFE data is encapsulated within
ethernet frames.

Egress processing
As illustrated in figure 3, the original ethernet frame is
encapsulated inside the new ethernet frame, in addition:

• The original ethernet headers (source, destination
MAC address and optional vlan information) may
be used for the outer header or maybe over written
with new programmed values.
◦ The outer destination MAC address identifies

the intended destination processing node.
◦ The outer source MAC address provides the

identity needed for the source processing
node.

◦ The optional VLAN tag information may be
present if the original ethernet header had
vlan information.

• Programmed metadatum are encapsulated, each in
its own TLV. The 16 bit type field of the TLV
uniquely identifies each transported metadatum.

• The total metadata size (including 16 bits for the
length header) is included in the Metadata Length
field.

• A standard 16 bit ether type field is set to a value
recognized for IFE. The default value is 0xFEFE2.

Allowed metadata (as specified by policy) to be
encapsulated is selected in one of two ways:

1. Extracted from the skb or other kernel constructs
(eg conntrack details) at runtime. The policy-data
must specify that the specific metadatum is to be
allowed.

2. Statically set at configuration time. Statically
provisioned metadata values override runtime
values. Refer to the egress processing algorithm
below for details.

The egress processing algorithm is as follows:

• Increment action instance statistics for packet and
byte count observed.

• Apply runtime metadata against the programmed
metadata filter list. If no legitimate metadata is
found that needs to be passed downstream, then
increment stats (the overlimits stat is abused for
this purpose) and the packet is allowed through as
is.

• Create the outer ethernet header which is a
duplicate of the incoming frame's ethernet header.
The outer ethernet header may have an optional
802.1q header (if one was included in the original
frame). Set the ether type to 0xFEFE.

• If the policy specifies the optional destination
MAC address, use it.

• If the policy specifies the optional source MAC
address, use it.

2 Value selected to symbolize FE to FE node
encapsulation.

Figure 2: Distribute Policy Graph Across 2 Nodes

Figure 3: Inter-FE Ethernet Encapsulation

Proceedings of netdev 0.1, Feb 14-17, 2015, Ottawa, On, Canada

• If the policy-data specifies the optional ether type,
override the current (0xFEFE) value with the
specified value.

• Walk the policy metadata filter list again. For
each metadata specified, either encapsulate the
runtime metadata or the specified static value.

• Note: At any steps above should an error be
detected, increment the error stats and ask for the
packet to be dropped

Listing 1 below shows a sample tc policy for encoding Iat
an FE on a source processing node instance. The listing is
intended to illustrate features as opposed to being practical.

Listing 1: IFE action egress sample policy

The policy-data specifies to:

• use an ether type of 0xDEAD to override the
default 0xFEFE.

• Override the source(src) and destination(dst)
MAC addresses.

• Use (i.e encode) the runtime skb->mark value.

• Ignore the skb hash. Instead send to the remote
node an encapsulated value of 10. In other words
the runtime value of the skb hash is over-ridden
by the static policy defined value.

• Ignore the runtime skb queue map and instead
always encapsulate a value of 17.

• Pass an arbitrary string metadata not related to
any kernel structures a value of “foobar”. This is
an example of how one would program an
arbitrary metadata value.

When the IFE action completes, the next action or
classifier in the graph is traversed (typically this would be
a mirred action[3] to redirect a packet to another port or a
vlan action to add a vlan tag to a packet etc).

Ingress processing
The target destination node receives IFE-encapsulated
packets at its ingress as shown in figure 2.

The IFE ethernet frame is recognized by its ether type.
Either the default 0xFEFE is observed or a different value

that is agreed on is used(in which case an administrator or
controller would program both ends).

The ingress processing algorithm is as follows:

• Increment statistics for packet and byte count
observed.

• Parse the metadata list and for each of the
metadata received compare against the allowed
metadata list

◦ If the metadatum is allowed, extract it and
install it (typically on an skb, but could be on
other structs etc).

◦ If the metadatum is recognized but not
allowed or content is malformed increment
stats and ignore.

◦ If the metadatum is not recognized ignore it
but increment stats (overlimits stats are
abused for this).

• Consume the outer header.

• Note: At any steps above should an error(such as
malformed metadata) be detected increment the
error stats and ask for the packet to be dropped.

When the ingress processing completes the packet and
restored metadata are passed to the next action or classifier
in the policy definition or simply up the network stack.

Listing 2: IFE action ingress sample policy

Listing 2 shows a sample ingress policy. A higher priority
filter rule using the u32 classifier is encountered first by
the packet. The filter looks for the ether protocol 0xDEAD
and ignores any other packet headers (u32 0 0 construct).
When it is matched, the ife action is invoked to decode the
IFE data encapsulated.

The policy in this case is only interested in the skb mark
field (allow mark construct). If the mark is observed within
the IFE encapsulated data, it is extracted and its value set
on the skb mark field. The packet is then run via the
classifiers again (as per policy construct reclassify[3]).

The second classification is done by the fw classifier (first
one to match ethernet protocol ip). This classifier upon
matching the skb mark value 0x11, would pass control to
the next action in the graph if indeed the IFE action had
earlier extracted mark value of 0x11.

tc filter add dev $ETH parent 1: protocol ip prio 10 \
u32 match ip protocol 1 0xff flowid 1:2 \
action … action … \
action ife encode type 0xDEAD \
allow mark use hash 10 use qmap 17 \
use mystring “foobar” \
dst 02:00:00:22:01:01 src 52:54:00:c3:4b:c5 \
action ...

tc filter add dev $ETH parent ffff: prio 2 protocol 0xdead \
u32 match u32 0 0 flowid 1:1 \
action ife decode allow mark reclassify
tc filter add dev $ETH parent ffff: prio 5 protocol ip \
handle 0x11 fw flowid 1:1 action …..

Proceedings of netdev 0.1, Feb 14-17, 2015, Ottawa, On, Canada

Overcoming Challenges
It would not be fun if we did not have challenges to
overcome.

MTU Challenges

The diligent reader would immediately notice that the IFE
action would enlarge the ethernet frame. This could cause
MTU issues. To address this:

• Limit the amount of metadata that could be
transmitted to fit within an MTU. We have a
flexible implementation which allows filtering on
what metadata goes on the wire3.

• Use large MTUs when possible (example with
jumbo frames).

◦ Note: Given that the IFE action is expected to
operate within the realm of Layer 2 and will
deal with virtual environments, we expect
large MTUs will be a common setup4.

Ethernet Type Challenges

While we expect to use a unique IEEE-issued ether type
for the inter-FE traffic, we use lessons learnt from VXLAN
deployment to be more flexible on the settings of the ether
type value used. Linux VXLAN implementation uses
UDP port 8472 because the deployment happened much
earlier than the point of RFC publication which prompted
IANA to assign udp port 4789. For this reason we make it
possible to define, at control time, what ether type to use
and default to the IEEE issued ether type. We justify this
by assuming that a given setup is likely to be owned by a
single organization and that the organization's
administrator or controller would be responsible to
program all participating processing nodes.

Metadata IDs

While the ForCES approach is to standardize the metaids
(Including leaving some space for private use), in an
organization under the same administrator it is possible to
just standardize on a private space.

Metadata Propagated

A few obvious skb metadata are currently supported. These
are:

• 32-bit skb mark (optionally with a 32-bit mask).
Metadata id 1

• 32-bit skb prio. Metadata id 3

3 Administrators for ethernet-extending protocols
commonly set the egress MTUs to be just enough to
allow for allowed maximum wire size minus extra
space needed. Care needs to be taken to not go too low
(leave about 576B for IPV4 and 1260B for IPV6)

4 The MTU for loopback device on my laptop is 64K.
And just as large for veth.

• 16-bit skb queue mapping. Metadata id 4

• 32-bit skb hash. Metadata id 2

The IFE action is designed to offer a simple interface to
add more types of metadata that can be transmitted across
inter-forwarding boundaries as demonstrated in the next
section.

Extending The IFE action
A core feature of the IFE action is to allow easy addition of
metadata handling in the kernel. To this end we have
provided a simplified kernel module API.

The module api provides methods for:

• checking presence of the metadata via
check_presence() method. This method would be
the one that decides where to retrieve the
metadata value from a runtime value or to use a
statically defined policy value.

• Metadata encoding on egress via encode()
method.

• Metadata decoding on ingress via decode()
method.

• Encoding the metadata when the control side
requests for it via the get() method.

• Allocating space for the metadata via the alloc()
method.

• Freeing of the metadata space via the release()
method.

The module author is expected to be able to present
implementations for the above methods. For basic
metadata like 32 or 16 bit definitions, we provide some of
the basic utility functions.

Listing 3 shows a sample use of the metadata methods for
the skb hash metadata.

The development of a metadata extension involves:

• The user specifies a struct tcf_meta_ops and
datafills it with all the required details (ops etc).

• The user implements the methods/ops required.

• At module initialization, register the struct
tcf_meta_ops using register_ife_op() API call.

Proceedings of netdev 0.1, Feb 14-17, 2015, Ottawa, On, Canada

Listing 3: skb hash metadata operations

At runtime on an egress node, when the metadata filter list
indicates a specific metadata is allowed, then its encode
method is invoked. Listing 4 shows the encode method for
the skb hash metadatum.

Listing 4: The encode method for skb hash

At runtime on an ingress node, when a policy metadata
filter list indicates a specific metadata(found encapsulated
in the received packet) is allowed, then its decode method
is invoked.
Listing 5 shows the decode method for the skb hash
metadatum.

Listing 5: skb hash decode method

The reader is referred to the kernel code for the IFE action
for more samples and fine-grained details.

Offloading IFE
It is possible to write extensions that take existing
hardware metadata carrying approaches such as Broadcom
Higig[5] and map them to IFE metadata thus extending the
policy graph across ASICs.

We believe that the IFE metadata sourcing and termination
is easy to implement in hardware. A smart NIC at a
receiving path, essentially parses the metadata and makes it
available via dma descriptors ready for consumption via
the stack.

Sample use Cases
There are many possible use cases for distributing a policy
graph as described earlier.

Pipeline-stage Indexing
An earlier motivation for us was to scale packet
processing. So we use metadata to carry pipeline-stage
indexing information for systolic packet processing
reasons.

You start with a single processing node and then as your
performance needs grow you split the functionality into
multiple machines thus horizontally scaling. In such a case
the processing pipeline is built such that the more
expensive functionality is parallelized.

Figure 3 shows how to scale a policy graph into pipelines
across additional processing using the IFE action as the
split point. Each east-bound node is identified via its MAC
address of the receiving port.

The reverse direction also uses the IFE action as the merge
point.

Other use Cases
The flexibility provided by the IFE action offers more
opportunities. A few examples of metadata that could be
attached for a variety of processing:

• OAM information – example turn on some packet
debug information on a need basis.

static struct tcf_meta_ops ife_hash_ops = {
 .metaid = IFE_META_HASHID,
 .name = "skbhash",
 .check_presence = skbhash_check,
 .encode = skbhash_encode,
 .decode = skbhash_decode,
 .get = get_meta_u32,
 .alloc = alloc_meta_u32,
 .release = release_meta_uxx,
 .owner = THIS_MODULE,
};
static int __init ifeprio_init_module(void)
{
return register_ife_op(&ife_hash_ops);
}

int skbhash_encode(struct sk_buff *skb, void *skbdata,
struct tcf_meta_info *e)
{
 u32 skbhash = skb->hash;
 if (e->metaval) { /* use static value */
 skbhash = *(u32 *)e->metaval;
 }
 if (!skbhash)
 return 0;
 skbhash = htonl(skbhash);
 return tlv_encode(skbdata, e->metaid, 4, &skbhash);
}

int skbhash_decode(struct sk_buff *skb, void *data, u16 len)
{
 u32 shash = *(u32 *) data;
 shash = ntohl(shash);
 skb->hash = shash;
 return 0;
}

Figure 4: Scaling by Splitting

Proceedings of netdev 0.1, Feb 14-17, 2015, Ottawa, On, Canada

• Exception handling information – example
VXLAN service handling.

• Authentication and authorization information.

• Versioning information.

• Compliance information.

• Service Identifiers.

Integrating In A Controller Environment
We have illustrated how one would control the IFE
policies over standard tc cli tooling. However, this could
get cumbersome as the number of nodes grows (very
extreme when you start using containers). For this reason it
would make sense to automate the process with the use of
a centralized controller.

To that end we have implemented policy control involving
the IFE and other graph nodes via the ForCES architecture.
The IFE action is modeled as a ForCES LFB(Logical
Functional Block).

Future Work
We have not yet done good performance measurements.
We do expect to see slight increases in latency when a
processing graph is split across nodes, but believe the
overhead will be small due to the fact we are running
directly over ethernet. We will be publishing performance
numbers in the future.

We plan to prototype hardware offloading ideas via the
rocker[4] device or an offloaded network processor.

We are also exploring ways to extend usability at user
space tc level of the metadata control such that simple new
metadata extensions do not require any code changes in the
tc utility.

Clearly, for sanity of inter operation, standardization is
needed. Our intention is to be able to, in the future,
discover these metaid values by querying the kernel; for
now we have specified our own Linux values as shown in
the next section.

Acknowledgements
The preparation of these instructions and the LaTeX and
LibreOffice files was facilitated by borrowing from similar
documents used for ISEA2015 proceedings.
The authors would like to thank Evangelos Haleplidis for
providing feedback on this paper.

References
1. https://datatracker.ietf.org/wg/forces/documents/
2. https://datatracker.ietf.org/doc/draft-ietf-forces-interfelfb/
3. Jamal Hadi Salim, “TC Classifier-Action Architecture”,
Proceedings of Netdev 0.1, Feb 2015
4. Scott Feldman, “Rocker: switchdev prototyping
vehicle”,Proceedings of Netdev 0.1, Feb 2015
5. https://en.wikipedia.org/wiki/Higig

Authors Biographies
Jamal Hadi Salim has been dabbling on Linux and open source
since the early to mid 90s. He has contributed many things both
in the Linux kernel and user-space with a focus in the networking
subsystem. Occasionally he has been known to stray and write
non-networking related code or even documentation. Jamal has
also been involved in what kids these days call SDN for about 15
years and co-chairs the IETF ForCES Working Group.

DJ is responsible for Software and Systems Architecture of
Verizon’s Network Evolution program. He has paid for his sins
already with many years of Network Development and is now
focused on large scale network deployment. He has a keen
interest in parallelism of the Network Processing applications and
is a big fan of open networking in which he believes Linux plays
an important role.

Proceedings of netdev 0.1, Feb 14-17, 2015, Ottawa, On, Canada

