
Linux Traffic Control Classifier-Action Subsystem Architecture

Jamal Hadi Salim
Mojatatu Networks

Ottawa, Ont., Canada

hadi@mojatatu.com

Abstract
This paper describes the Linux Traffic Control (TC) Classifier-
Action(CA) subsystem architecture. The subsystem has been
around for over a decade (long before OF or P4) in the kernel
(and longer in experimental patches before that) and we are
finally motivated to do the boring unpleasant part of any open
source project – documenting. We will describe the packet-
processing-graph architecture and the underlying extensibility
offered by the CA subsystem; we will further discuss the formal
language that makes it an awesome packet processing
architecture.

Keywords
Linux, tc, filters, actions, qdisc, packet processing, Software
Defined Networking, iproute2, kernel

 Introduction
The Linux Kernel offers a very rich packet-processing
framework.

Figure 1 visualizes a simplified layout of a classical packet
path. Packets come into the ingress of a port and go
through a variety of processing components illustrated as
the cloud above. Outgoing packets emanating from the
illustrated cloud end up at an egress port to proceed with
their journey.
As can be seen, the port is the anchor point of a packet
processing path(or graph).

Ports
In the Linux world, ports are known as network devices or
netdevs1 in short. We are going to use those two terms
inter-changeably.

Ports typically have a single datapath packet input and a
single packet output in the east-west direction as shown in
Figure 1. The datapath entry points are also split into an

1 Not to be confused with netdev which stands for network developer.
It is arguable which semantic the netdev mailing list is derived from.

ingress as well as an egress. It is possible to have a port
with only one of those entry points2.

Ports3 have north-south interfaces for control as well as
eventing (mostly via the netlink[3][4] API). Control and
configuration utilities such as iproute2 or ifconfig make use
of these north-south interfaces.

In the east-west direction a netdev implements some
datapath activity.

The simplicity of the netdev abstraction has resulted in its
wide adoption. Most port abstractions are ethernet-derived
(meaning they will have L2 addresses that are ethernet
MAC addresses). This makes it easy to generalize a lot of
the tooling. For example, one can run ip command on any
netdev regardless of what it implements; one could attach
L3 addresses to a port, point a route at it, refer to neighbors
(eg ARP/ND) on its egress, etc. In general it means netdevs
can be composed in a traditional packet processing graph
with L3 processing (attaching an IPv4/6 or even a
DECNET address), L2 or other more exotic setups such as
stacking netdevs (tunneling, bonding etc).

What netdevs do in their processing of received packets
varies widely. They may be used for handling hardware or
virtual abstractions. A few examples of netdev
implementations are:

• lo. The host loopback. Takes a packet and loops it
back. The processing scope is within the host

• Physical ports. Variety of physical controlling
netdevs: wired ethernet chips, USB, wireless,
CAN, etc. typically named ethx.

• Tuntap. Handles packets shunting between kernel
and user space. A user application writes packets
to a file descriptor which show up on the egress of
a tuntap. Likewise reading the file descriptor, a
user space application receives packets that show
up on the ingress of the tuntap. Tuntap is popular
as a virtual NIC for Virtual Machines as well as in
user-space based packet-processing.

2 The author is aware of the dummy netdev which takes in packets but
does not egress them. Can not think of a good use case for the
opposite.

3 In the SNMP world, Linux ports would be equivalent to the abstraction
known as interfaces.

Figure 1: Packet Processing Path

Proceedings of netdev 0.1, Feb 14-17, 2015, Ottawa, On, Canada

mailto:hadi@mojatatu.com

• A variety of tunnels. You name it, Linux has it:
VLAN, GRE, VXLAN, IPIP, L2TP, Ipv6 over
V4, etc

• MACVlan. Started as a way to represent
individual MAC addresses on multi-mac physical
ethernet ports but is getting feature-fat. It can act
as a bridge or direct hardware offload into a
container or host.

◦ MacVTAP does the offloading of hardware
directly onto VMs the same way MACVlan
does it for containers

• veth. Implements a pipe pair of netdevs. Packets
injected on the egress of one half show up on the
ingress of the other half. Typically, one half of the
pipe sits in a host and the other inside a container
(although there are use cases where each half sits
in a different container).

• Bonding/Team. Device aggregation, LACP etc.
Has more features than a swiss-army knife.

• IP over Infiniband

• Bridge. Feature-rich IEEE bridge abstraction

• IFB. Intermediate device used to aggregate
processing graphs, typically for flow QoS.

• Dummy. Takes a packet, accounts for it then
drops it.

• Many, many others. Look at the code (or write
one).

The Linux Datapath
Figure 2 expands on the general Linux datapath and
exposes more details of the cloud illustrated in figure 1.

Several building blocks are shown. About all building
blocks and their components as described in this document
can be written as kernel modules. Control of all the
datapath blocks is done from user-space (in the traditional

unix sense of separating policy from mechanisms; the
datapath being the mechanism implementation).

In this document we are going to focus on parts of the
Ingress and egress Traffic Control, but we feel it is
important to talk about the other blocks so as to provide
context.

Netfilter
Netfilter[1] is a feature-rich, modular, extensible packet-
processing framework. It provides a set of hooks at
strategic Linux kernel packet-processing points that allows
kernel modules to register callback functions. A registered
callback function is then invoked by the kernel for every
packet that traverses the respective hook within the
network stack. The hooks (see figure 2) are labeled
according to their position in the datapath

• Pre-routing,

• Forwarding,

• Post-routing,

• Input (to the local network stack),

• Output (from the local network stack)).

Netfilter[1] has too many powerful features that we would
not be doing it justice in this short description, but we
wanted to highlight a few features it possesses:

• Packet filtering

• All kinds of network address and port translations
one can think of

• Multiple layers of user-visible control and
datapath APIs for writing applications and
datapath components.

• Stateful connection tracking capability known as
conntrack[2].

Note: Figure 2 shows a bypass of the stack from ingress to
egress. This is achieved by the CA subsystem with
mirroring (to possibly many ports) or redirect (to one port).

Figure 2: Linux Datapath

Proceedings of netdev 0.1, Feb 14-17, 2015, Ottawa, On, Canada

Linux Traffic Control Overview
Figure 2 shows 3 blocks labeled with the term Traffic
Control. Lets start with some concept definitions and use
figure 3 which shows the egress path and combines the
concept of Egress Traffic Control and Traffic Control
Scheduling illustrated in figure 2.

• Queueing Disciplines (qdiscs) are scheduling
objects which may be classful or classless. When
classful, the qdisc has multiple classes which are
selected by classifier filters. Given classful qdiscs
can contain other qdiscs, a hierarchy can be setup
to allow differentiated treatment of packet
groupings as defined by policy. Each qdisc is
identified via a 32-bit classid.

• Classes are either queues or qdiscs. Qdiscs
further allow for more hierarchies as illustrated.
The parent (in the hierarchy) qdisc will schedule
its inner qdiscs/queues using some defined
scheduling algorithm – refer to a sample space
further down. Each class is identified via a 32-bit
classid.

• Classifiers are selectors of packets. They stare at
either packet data or meta data and select an
action to execute. Classifiers can be anchored on
qdiscs or classes. Each classifier type implements
its own algorithm and is specialized. A classifier
contains filters which implement semantics
applicable to the classifier algorithm. For each
policy defined, there is a built in filter which
matches first based on the layer 2 protocol type.

• Actions are executed when a resulting classifier
filter matches. The most primitive action is the
built-in classid/flowid selector action; its role is to
sort which class/flow a packet belongs to and
where to multiplex to in the policy graph.

A port has two default qdisc anchor points attached to it.
The root qdisc is anchored at the egress path as illustrated
on figure 3. On the the ingress path the ingress qdisc as
shown in figure 4 exists.

The ingress qdisc is a dummy queuing discipline whose
role is to provide anchors to the CA subsystem.

A packet received by the ingress qdisc is essentially passed
to the CA subsystem for processing based on the policy
graph definition.

As mentioned, each qdisc/class is identified by a 32-bit id
known as the classid or flowid. The classid is split into a
16 bit major id and 16 bit minor id. So one would see x:y
used where x is the major number often referring to the
hierarchy level and y is the minor number referring to
entities within a hierarchy. Major number 0xffff is reserved
for the ingress qdisc.

It is out of scope of this paper to describe qdiscs but we
will mention a few to provide context and show variety:

• Prio. Flows selected internally based on TOS or
skb->priority fields. Work conserving scheduling
algorithm based on strict priority sorting (meaning
low prio packets may be starved).

• Pfifo. Classless qdisc with a single FIFO queue.
Packets are scheduled out based on arrival first in
first out (FIFO).

• Red. Classless qdisc with scheduling based on the
RED[7] algorithm.

• tbf. Classless qdisc, non-work conserving
scheduling algorithm for shaping that is based on
token bucket algorithm.

• htb. Hierarchical(classful) qdisc extension to TBF.
• Sfq. Stochastic fair queueing loosely based on

[5].
• codel. Based on controlled delay algorithm[6].
• fq-codel. Extending codel with a sfq flavoring.
• Netem. Provides a variety of network emulation

functionality for testing protocols by allowing
mucking around with the protocol properties and
semantics[14].

• Many others. The plugin definition is well
defined. Write one today.

Although Figure 3 shows no presence of CA anchoring on
the lower hierarchy qdiscs, it should be noted that one
could create policies anchored at any qdisc or class4. We
are leaving out details because we feel that discussion is
out of scope for this document.

Some History of Linux Traffic Control
This paper would be incomplete without a little reminder
of the past.

4 Depends on the qdisc implementation. Most allow for this.

Figure 3: Egress Traffic Control Layout

Figure 4: Ingress Traffic Control

Proceedings of netdev 0.1, Feb 14-17, 2015, Ottawa, On, Canada

Alexey Kuznetsov pioneered the Linux Traffic Control5
architecture. Alexey submitted the initial code patches
which first showed up in kernel version 2.1.

Werner Almesberger6 did a lot of work in the formative
years[10][9][8] including authoring all the ATM related
work.
The author contributed the action extension to the CA
subsystem and is current maintainer of the CA subsystem.

Classifier-Action Subsystem Overview
The main role of the CA subsystem is to look at incoming
packet data and/or metadata and to exercise a mix of
classifier filters and action executions to achieve a defined
policy.
There is a strong influence of the unix philosophy of
composability in the approach to packet processing in the
CA subsytem. Any classifier or action can be written as
kernel module and a policy can be used to stitch together
the different components for a defined outcome.

We are going to use the popular tc utility as a guide
throughout the rest of this document to highlight the
different architectural constructs; however, we want to
point out that any application can use the same netlink API
used by tc and therefore the features are not tied to tc.

Listing 1: Simple Egress Classifier-Action Policy Addition

Listing 1 shows a simple egress policy addition using the
tc BNF grammar. We use Listing 1 to describe some
important attributes of the CA subsystem:

• Attachment point : to an arbitrary port $DEV
egress qdisc with id 1:0

• Built-in match : Matches on ipv4 packets
(protocol ip)

• A filter prio rity of 10
• A specified classifier type filter to use : the u32

classifier to match icmp (protocol 1 mask 0xff)
packets. Note each classifier will have attributes
proprietary to itself as shown above.

• Upon filter match:
◦ Built-in action : Selects a queue/qdisc with

classid 1:10
◦ Programmed action : Accepts the packet

(action ok). Note each programmed action
will have attributes proprietary to itself as
shown above.

5 In addition to a lot of very creative things Alexey has done over the
years.

6 Werner was hacking on everything from LILO (most popular Linux
bootloader) to file systems in those days

Classifiers And Filters
As shown in figures 3 and 4, and illustrated in Listing 1,
the qdisc is used as the policy filter attachment point.
The built-in filter is described in the policy using the
protocol ip syntax. The built-in filter lookup is very
efficient since the protocol type is already in the cpu cache
at the point the lookup happens (skb->protocol). The built-
in match very quickly discriminates what policy tree to
use.

Illustrated in Listing 1 as well is a priority attribute tied to
each filter. Filters are kept in a priority-ordered list for
each protocol(i.e matching built-in classifier).
It is possible to configure two filter policies on the same
protocol to match the same meta/data but have different
action execution graphs7 which then merge them to provide
graph continuity as will be shown later. The purpose of the
priority field is for ambiguity resolution in case of such
filter conflicts. Lower priority values are more important.

Listing 1 also shows the u32 classifier type used in the
policy definition. The CA subsystem provides a plugin
framework to define arbitrary classifiers.
There are many classification algorithms supported, (not
exclusive) examples include:

• u32. Uses 32 bit value mask chunks on arbitrary
packet offsets for filter matching. A very efficient
protocol parse tree can be built with this low level
classifier.

• fw. A very simple classifier that uses the skb mark
metadata to match.

• route. Uses ip route attribute metadata (like route
realms) to match.

• rsvp. Classification based on RSVP[13] filtering
definition.

• basic. A collection of smaller classifiers that can
be combined into a more complex match.

• BPF. Based on Berkley packet filter[17][21] as
the match engine.

• Flow. A collection of various packet flow and
common meta data selectors (including
conntracking, user ids, group ids, etc) that can be
combined into a complex policy.

• An Openflow classifier[14]. An N-tuple classifier
that looks at all the packet fields defined by the
OF specs (There were about 18 at the publication
of this document.

• Many others. If you dont like any, write your
own.

Note that each of these classifiers may have its own
internal structuring with its own elements8. Figure 5
illustrates a parse tree for a layout of the u32 filter setup.

7 Sometimes this is for adding backup filter rules so when the higher
priority filter is removed subsequent incoming packets are matched
by the remaining lower priority filter.

8 Each element would have a 32 bit identifier. Refer to u32 classifier in
figure 5 for an example of element ids.

tc filter add dev $DEV parent 1:0 protocol ip prio 10 \
u32 match ip protocol 1 0xff \
classid 1:10 \
action ok

Proceedings of netdev 0.1, Feb 14-17, 2015, Ottawa, On, Canada

Very efficient parse trees can be created for a specific
setup but require attention to detail9.

Classifier Design Principles

There are two guiding principle for the classifier
architecture:

1. It is not possible to have a universal classifier
because underlying technologies are constantly
changing and there is always some new academic
flavor-of-the-day classification algorithm. For
example, the illustrated u32 classifier matches on
skb data using arbitrary 32-bit value/mask pairs,
at arbitrary packet offsets; whereas the fw
classifier matches on skb->mark metadata.

2. Sometimes we need more than one classifier type,
each with different capabilities, to properly match
a given signature. So an important CA design
guideline is to allow for multiple classifier types
to be used when needed by a policy.

Based on these principles, it is possible to match first based
on one classification algorithm (example u32 or bpf) then
subsequently on a different algorithm (example ematch
text classification with string matching via Boyer-Moore
Algorithm[16] or via Knuth-Morris-Pratt algorithm[17] or
whatever the latest text search algorithm is)10. The CA
design choice has fostered innovation by not allowing
monopolies of chosen classification algorithms.

Actions
Listing 1 illustrates the actions to be executed when the
filter matches.
As mentioned earlier, there is a built-in action which
selects the class/flow/queue. Listing 1 shows the built-in
action selecting a class id 1:10.

9 Good fodder for automated policy generation and display.
10 Hardware commonly has a lookup using TCAM which may be

followed up with lookup on RAM but we have more freedom in
software therefore there is no need for a software architecture to be
limited.

The policy of Listing 1 further describes that the packet be
accepted and allowed to proceed in the processing pipeline.
By design, actions adhere to the unix philosophy of writing
programs that do one thing and do it well. One could for
example compose a policy with a series of actions in a
unix-like A|B|C|D pipe where each subsequent action
refines further the previous action's work-result and just as
in unix the pipeline could be terminated by any action in
the pipeline. More on this when we talk about
programmatic action pipeline.

Each action type instance maintains its own private state
which is typically updated by arriving packets; but
sometimes by system activities (timers etc).
To illustrate a few semantics of actions, lets show some of
the attributes of the action programmed from Listing 1
retrieved using tc again. The output is captured after
sending 10 pings to a remote location and is shown in
Listing 2.

Listing 2: Action Runtime Policy Details

The action pass is subcomponent of the gact (generic
action, more later). In this case several things are
illustrated11:

• 32-bit system global per-action-type instance
identifier of the action (index 1) which uniquely
identifies the action type instance.

• how many policy graphs the action is bound into
(bind 1); one in this case. Actions could be shared
on multiple policies (more on this later).

• Age : How long ago the action was installed (32
seconds).

• Activity : When the last time the action was used
(15 seconds ago).

• A bunch of standard statistics like how many
bytes(380) and packets(10) were processed by the
action. Other stats we can ignore for now for
brevity; sufficient it is to say actions can add
extended stats.

A few examples of actions include:
• nat. Does stateless NAT
• checksum. Recomputes IP and transport

checksums and fixes them up.
• TBF policer. A token bucket as well as simple

rate meter,

11 A lot of these attributes look very similar to what OpenFlow offers,
but it should be noted that the Classifier-action subsystem existed many
years before the birth of OpenFlow.

 action order 0: gact action pass
 index 1 ref 1 bind 1 installed 32 sec used 15 sec
 Action statistics:
 Sent 980 bytes 10 pkt (dropped 0, overlimits 0 requeues 0)
 backlog 0b 0p requeues 0

Figure 5: u32 Classifier Parse Tree

Proceedings of netdev 0.1, Feb 14-17, 2015, Ottawa, On, Canada

• Generic Action (gact). General actions that
accept, drop packets or aid in the CA pipeline
processing. More on gact later.

• Pedit. A generic packet editor. It uses value/mask
pairs and can perform various algorithms on the
packet (xor, or, and, etc).

• Mirred. Redirects or Mirrors packet to a port
• vlan. Encap or decap VLAN tags.
• Skbedit. Edits skb metadata
• connmark. Relates netfilter connection tracking

details to skb marks.
• Etc, etc. Write a new one.

Classifier Action Programmatic Control
The CA subsystem provides a rich low level programmatic
interface for composing policy to achieve a packet service.

At the core of the CA policy definition are two classes of
pipeline controls. For lack of a better term, we will refer to
them as pipeline opcodes. The first set of opcodes drives
the classification block and the second set drives the action
block behavior.

Each action is programmed with one or more opcodes to
drive the policy flow. As an example a policer action
could be programmed, when a rate is exceeded, to
terminate the pipeline and indicate a packet is to be
dropped or it may be programmed to take a different
processing path to lower the quality of service. Essentially,
the intent is programmed from the control plane and the
kernel CA block implements the mechanisms.

It is important at this point to introduce the generic action,
gact, since its sole reason for existence is to propagate the
pipeline opcodes for the purpose of programmability. A
gact instance is always programmed with a pipeline opcode
(example in Listing 1, the action ok construct). When gact
receives a packet, it accounts for it and then based on the
programmed pipeline opcode helps define the flow control.

Classification Controls
Figure 6 shows some of the controls that provide the
pipeline programmability that affect the packet service.

A packet entering the classifier block, upon matching a
specific filter rule, gets exercised through the action block.

Depending on the specific action's decision, the result
could be:

• Reclassify. The packet is exercised through the
whole set of anchored filter rules from the top
again. This could be useful in the case of de-
tunneling and the need to apply policy on the
inner packet headers or tunneling and need to
apply policy to the outer headers.

• Continue. The packet continues to be processed
by the next lower priority filter rule.

• Drop. The pipeline is terminated and the packet is
dropped.

• Pass/OK. The pipeline is terminated, however the
packet is accepted and is allowed to proceed
further to the stack on the ingress or go out a port
on the egress.

• Stolen. The pipeline is terminated, the packet has
been stolen by the action. This could mean it has
been injected into a different pipeline (example
redirected via mirred) or it could have been
queued somewhere by the action so it could be re-
injected later into some arbitrary pipeline.

Opcode: Reclassify

Lets take a look at how we could use the reclassify control
opcode in a policy definition.

Listing 3 shows a set of rules that pop a vlan header, drop

Listing 3: Reclassifying After De-tunelling

if the packet is from 10.0.0.21 otherwise if from any other
host in 10.0.0.0/24 the skb metadata queue_mapping is set
to 3 to be used further downstream.

Figure 6: filter-action flow control

#pop ingressing 802.1q vlan headers, then reclassify
tc filter add dev $ETH parent ffff: prio 1 protocol 802.1Q \
u32 match u32 0 0 \
flowid 1:1 \
action vlan pop reclassify
#Drop any packets from 10.0.0.21
tc filter add dev $ETH parent ffff: protocol ip prio 2 \
u32 match ip src 10.0.0.21/32 \
flowid 1:2 \
action drop
#Set the rest of the 10.x network packets to use skb queue map 3
tc filter add dev $ETH parent ffff: protocol ip prio 3 \
u32 match ip src 10.0.0.0/24 \
flowid 1:3 \
action skbedit queue_mapping 3

Proceedings of netdev 0.1, Feb 14-17, 2015, Ottawa, On, Canada

To show the programmatic aspect, it is easier to visualize
with a diagram. Listing 3 is visualized in Figure 7.

As can be observed, we are able to build if/else constructs
easily by taking advantage of filter rule priorities. The
reclassify opcode gives us the opportunity to restart the
policy graph. Essentially, it is a loop program control in
that the parse operation is restarted. Also illustrated is a
drop opcode.

Also shown in figure 7 is a pipe opcode control construct.
While it is not shown in the policy of listing 3, the opcode
is configured as the default by skbedit action12. Pipe is an
instruction to the pipeline to continue processing the next
action (in this case there was none).

Opcode: Continue

Lets take a look at how we could use the continue control
opcode.

Listing 4: A more complex policy

12 I looked at the source code ;->

Listing 4 shows a set of rules that pop an IFE header, dig
deeper if the packet is from 192.168.100.159 to see if it has
an skb mark of 0x11.

Figure 8 shows the visualization of Listing 4.
The important detail to observe here is that the continue
control construct essentially gives us an else if extension to
the existing if/else constructs. Also observe another
exposed opcode ok.

Another way to visualize the policy is from a functional
point of view. Figure 9 shows the functional view of
Listing 4.

Action Controls
Actions have opcodes that are specific within their pipeline
scope. These are:

• Pipe. Equivalent to unix pipe construct
• Repeat. A loop construct
• Jumpx. Essentially a forward goto construct

Opcode: Pipe

Figure 10 shows a simple functional view of pipe control
of actions.

#pop ingressing IFE headers, set all skb metadata then reclassify
tc filter add dev $ETH parent ffff: prio 2 protocol 0xdead \
u32 match u32 0 0 flowid 1:1 \
action ife decode reclassify
#look further if the packet is from 192.168.100.159
tc filter add dev $ETH parent ffff: prio 4 protocol ip \
u32 match ip dst 192.168.100.159 flowid 1:2 \
action continue
#now classify based on mark
tc filter add dev $ETH parent ffff: prio 5 protocol ip \
handle 0x11 fw flowid 1:1 \
action ok

Figure 9: Functional View of Listing 4

Figure 10: Action Control Policy Example

Figure 7: CA Control For Listing 3

Figure 8: CA Control For Listing 4

Proceedings of netdev 0.1, Feb 14-17, 2015, Ottawa, On, Canada

In the simple example shown above the packet is piped
from one action to the next. This is the unix equivalent of
A|B|C|D. Figure 10's intent is achieved by programming
each of the actions with the pipe opcode. As in unix, the
action work pipeline can also be terminated by conditions
programmed into actions; sometimes this is due to reaction
to processing errors or other conditionals such as some
threshold being exceeded.

Opcode: Repeat

Another opcode that is restricted to the action block is the
REPEAT opcode. This is illustrated in Figure 11 where
action C under some conditions may branch to action D or
request the pipeline to re-invoke it.

Essentially the REPEAT opcode is a loop construct. The
scope of REPEAT opcode (as is the PIPE opcode) is only
valid within the action block (as opposed to reclassify
which has global effect).

An additional opcode, JUMPx, was envisioned back then
but was never fully implemented because no strong use
cases emerged13. The author still believes it is useful and
will implement it when time allows. JUMPx was intended
as a way to skip x actions in a pipeline.
As mentioned earlier the action block work-flow can be
terminated by the opcodes OK, DROP, STOLEN.

Classifier Action Programmatic Control Summary

We have shown that it is possible to compose complex
policy definitions that are made possible by the presence of
CA opcodes. Program control constructs like if/else/else
if/loop/(and possibly goto) are complemented with
programmatic statements in the form of actions and filter
rules.

Table 1 below provides the summary of all supported
opcodes and how they are interpreted at either the classifier
or action blocks.

13 The lack of a use cases could be due to ignorance of the feature.

Table 1: Classifier-Action Opcodes

Action Instance Sharing
Action instances can be shared and bound by multiple
policy graphs. This could be useful in complex policy
graphs where joint accounting or sharing of resources
amongst flows is needed.
We use Figure 12 to demonstrate a use case where several
action instances are shared (conntrack instance 1, policer
instance 1 and dropper instance 1). Figure 11 shows a
setup where someone with access to the internet is sharing
their access with a next door neighbor. The neighbor is
connected via the wireless port, wlan0. The owner's home
network is connected via the wired port, eth0. The goal is
to restrict the neighbor's download rates to no more than
256Kbps and to have the shared 256Kbps contended for
with the owner's downloads.
Two policy rules are provisioned – one for the home
network and another for the neighbor's network (illustrated
with red and blue colors).

All of the neighbor's incoming packets are tagged with a
connection tracking mark of 1 using nftables. The home
network traffic is marked with value 2. The netfilter
subsystem stores the connection state along with the mark.
Download requests go out the wan port eth1. Response
packets coming in (downloads etc) arrive from the internet
on the ingress of eth1; they are sent to connmark action
instance 1 by the u32 classifier. Connmark instance 1
consults the netfilter connection tracking state and maps all
flows to the (original) connection mark. Packets are then
re-classified via the fw classifier based on the restored
mark. All packets with mark 1 and 2 are then subjected to a
shared policer instance 1. If the aggregate rate exceeds

Figure 11: Action Functional Graph Showing a
REPEAT Opcode

OPCODE Classifier Program Control Action Program Control
RECLASSIFY Start classification from the top End Action Pipeline
CONTINUE Iterate next rule in the same protocol End Action Pipeline
STOLEN/QUEUED Terminate Pipeline. Stop processing End Action Pipeline
DROP Drop packet. Terminate pipeline. Stop processing End Action Pipeline
ACCEPT/OK/PASS Terminate Pipeline. Allow packet to proceed End Action Pipeline
PIPE Terminate Pipeline. Allow packet to proceed Iterate Next Action
REPEAT Terminate Pipeline. Allow packet to proceed Repeat Action

NOT YET IMPLEMENTED NOT YET IMPLEMENTEDJUMPx

Figure 12: Neighbor Sharing

Proceedings of netdev 0.1, Feb 14-17, 2015, Ottawa, On, Canada

256Kbps, the policer will pass a verdict on the neighbor's
packets to be dropped14. The home network users packets
on the other hand do not suffer the same fate; when the
policer instance 1 aggregate rate is exceeded, they are
passed to another policer (instance 2) which further allows
them the luxury of using an extra 1Mbps before they are
dropped.

Flow Aging
All actions keep track of when they were installed and
when they were last used. A simple way to age flows
would be to add a pipe action to a filter. A control space
application can then be used to retire idle flow entries by
periodically looking at the age fields.

Late binding
It is possible to create action instances, give them
identifiers and then later bind them to one or more policies.

Listing 5: Action Late Binding

Listing 5 shows a connmark action being instantiated and
later bound to a flow. Note: That same action instance
could have been bound to multiple flows.

Extending the Classifier-Action Across Nodes
[15] Describes the InterFE(IFE) action that is capable of

extending a policy graph and spreading it across multiple
nodes. This is typically done to scale instantiated policy
graphs or access specialized processing. One can think of
IFE as a patch extending the policy graph across nodes
(physical, VMs, containers, etc)

Future Work
There are several opportune activities that the community
could undertake to get us to the next level.

14 For TCP this helps slow down the neighbor's downloads.

Improving Usability
One of the main challenges of the TC architecture (i.e. not
limited to the CA subsystem) in general has been usability.
Some of the constructs of the tc utility BNF grammar,
although precise and complete, are very low level and
could be overwhelming to the lay person. Werner
Almesberger tried to improve usability with tcng[11] but
lost interest in the project at some point. That work could
be taken over by anyone interested.

TC and the CA subsystem in general lend themselves well
to a programming language. As we have shown a lot of the
necessary programmatic controls (loops, branches,
statement executions) are already in place. It is possible to
extend the tc BNF grammar into a higher level language
binding. The author is very interested in this work and
welcomes a discussion in this area.

Functional Discovery
Earlier versions of the CA subsystem(up to until a year
ago) had some rudimentary capability discovery built in.
No user space code was added to take advantage of the
feature, so a decade later it sounded fair to remove it. Over
the years the author feels he has learnt lessons in particular
in the involvement with ForCES[22] and working with
variety of hardware with equivalent functions but differing
capabilities that he feels it is time to for a fresh
perspective; however, that level of discussion is out of
topic for this paper.

Hardware Offloading
Given the architecture of the CA subsystem (the control
constructs and functional statement expression), it would
be very fitting to implement the whole architecture in
hardware. Infact on reviewing a lot of hardware layout one
would observe there is already a lot of synergy with the TC
CA architectural definitions.

Figure 13 shows a Realtek RTL8366xx datapath and
mapping to TC.

While the RTL8366xx is a tiny chip, a lot of other ASICs
have similar architectural layout but different capabilities
and capacities. There are challenges that need to be
addressed with handling the capacitance mismatch between
what hardware offers and how policy maps it. We have a

 tc actions add action connmark zone 3 index 10
tc filter add dev $ETH parent ffff: pref 11 protocol ip \
u32 match ip protocol 17 0xff flowid 1:3 action connmark index 10

Figure 13: Distribute Policy Graph Across 2
Processing Nodes via IFE action

Figure 13: Realtek RTL8366xx Datapath

Proceedings of netdev 0.1, Feb 14-17, 2015, Ottawa, On, Canada

lot of community experience in dealing with quarks (from
hardware bugs) and feature differences that can be
leveraged in getting this part right. As can be observed
from figure 13, there is a very close resemblance between
the hardware datapath and the Linux datapath.

The author believes there is strong need for a tight
coupling between the Linux control interfaces, which are
already widely deployed, and hardware offload. The
requirement is necessary to provide transparency of the
tooling. There is a huge ecosystem around linux tooling in
place and while it is possible to have new tools, it should
only be done if the current toolsets cannot be re-factored in
order to provide smooth continuity. In other words the
hardware ASICs provide drivers that are exercised
transparently by the current Linux tools and APIs.

Acknowledgements
The preparation of these instructions and the LaTeX and
LibreOffice files was facilitated by borrowing from similar
documents used for ISEA2015 proceedings.
The author thanks Werner Almesberger, Alexey Kuznetsov
and David Miller for their patience and many words of
wisdom when he was working on tc action.

References
1. Netfilter home, http://www.netfilter.org/
2. Netfilter's Connection Tracking System, Pablo Neira Ayuso,

people.netfilter.org/pablo/docs/login.pdf
3. Pablo Neira Ayuso,Rafael M. Gasca, Laurent Lefevre.

Communicating between the kernel and user-space Linux
using Netlink sockets. Software: Practice and Experience,
2010

4. J. Hadi Salim, H. Khosravi, A. Kleen, A. Kuznetsov,
Linux Netlink as an IP Services Protocol, RFC 3549, July
2003

5. Paul E. McKenney "Stochastic Fairness Queuing", IEEE
INFOCOMM'90 Proceedings, San Francisco, 1990.

6. Kathleen Nichols, Van Jacobson. "Controlling Queue Delay"
ACM Queue. ACM Publishing. 6 May 2012

7. Sally Floyd, Van Jacobson; "Random Early Detection (RED)
gateways for Congestion Avoidance". IEEE/ACM
Transactions on Networking (August 1993)

8. Werner Almesberger, “Linux Network Traffic Control –
Implementation Overview”, April, 1999

9. Werner Almesberger, "Linux Traffic Control - Next
Generation", 18 October 2002

10. Werner Almesberger, Jamal Hadi Salim, Alexey Kuznetsov
“Differentiated Services on Linux”, Proceedings of
Globecom '99, vol. 1, pp. 831--836, December 1999

11. Bob Braden (editor), “Resource ReSerVation Protocol (RSVP)
version 1”, RFC 2205

12. Jiří Pírko, “Implementing Open vSwitch datapath using TC”,
Proceedings of Netdev 0.1, Feb 2015

13. Jamal Hadi Salim, Damascene M. Joachimpillai, “Distributing
TC Classifier-Action Packet Processing”, Proceedings of
Netdev 0.1, Feb 2015

14. Stephen Hemminger, “Network Emulation with NetEm”,
Linux Conf Australia, 2005

15.Steven McCanne, Van Jacobson, "The BSD Packet Filter: A
New Architecture for User-level Packet Capture", Dec 1992

16.Robert S. Boyer, J Strother Moore, "A Fast String Searching
Algorithm.". Comm. Association for Computing Machinery,
1977

17.Donald Knuth, James H. Morris, James , Vaughan Pratt, "Fast
pattern matching in strings". SIAM Journal on Computing,
1977

18.OpenFlow Spec, https://www.opennetworking.org/
19.P4 Spec, http://p4.org/
20. ForCES Spec, https://datatracker.ietf.org/wg/forces/charter/
21. Daniel Borkman, “BPF classifier”, net/sched/cls_bpf.c

Author Biography
Jamal Hadi Salim has been dabbling on Linux and open source
since the early to mid 90s. He has contributed many things both
in the Linux kernel and user-space with a focus in the networking
subsystem. Occasionally he has been known to stray and write
non-networking related code or even documentation. Jamal has
also been involved in what kids these days call SDN for about 15
years and co-chairs the IETF ForCES Working Group.

Proceedings of netdev 0.1, Feb 14-17, 2015, Ottawa, On, Canada

https://datatracker.ietf.org/wg/forces/charter/
http://p4.org/
https://www.opennetworking.org/
http://citeseer.ist.psu.edu/context/23820/0
http://citeseer.ist.psu.edu/context/23820/0
https://en.wikipedia.org/wiki/Vaughan_Pratt
https://en.wikipedia.org/wiki/James_H._Morris,_Jr
https://en.wikipedia.org/wiki/Donald_Knuth
http://dl.acm.org/citation.cfm?doid=359842.359859
http://dl.acm.org/citation.cfm?doid=359842.359859
https://en.wikipedia.org/wiki/J_Strother_Moore
https://en.wikipedia.org/wiki/Robert_S._Boyer
http://www.tcpdump.org/papers/bpf-usenix93.pdf
http://www.tcpdump.org/papers/bpf-usenix93.pdf
http://www.netfilter.org/

