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Abstract
This paper describes the Linux Traffic Control (TC) Classifier-
Action(CA)  subsystem  architecture.  The  subsystem  has  been 
around for over a decade (long before OF or P4) in the kernel 
(and  longer  in  experimental  patches  before  that)  and  we  are 
finally motivated  to do the boring unpleasant part of any open 
source  project  –  documenting.  We  will  describe  the  packet-
processing-graph  architecture  and  the  underlying  extensibility 
offered by the CA subsystem; we will further discuss the formal 
language  that  makes  it  an  awesome  packet  processing 
architecture. 
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 Introduction
The  Linux  Kernel  offers  a  very  rich  packet-processing 
framework.

Figure 1 visualizes a simplified layout of a classical packet 
path.  Packets  come  into  the  ingress  of  a  port  and  go 
through a variety of processing components illustrated as 
the  cloud  above.  Outgoing  packets  emanating  from  the 
illustrated cloud end up at an egress port to proceed with 
their journey.
As can be seen, the port is the anchor point of a packet 
processing path(or graph).

Ports
In the Linux world, ports are known as network devices or 
netdevs1 in  short.  We are  going to  use  those  two terms 
inter-changeably. 

Ports typically have a single datapath packet input and a 
single packet output in the east-west direction as shown in 
Figure 1. The datapath entry points are also split into an 

1 Not to be confused with netdev which stands for network developer. 
It is arguable which semantic the netdev mailing list is derived from.

ingress as well as an egress. It is possible to have a port 
with only one of those entry points2. 

Ports3 have  north-south interfaces  for  control  as  well  as 
eventing (mostly via the netlink[3][4]  API).  Control  and 
configuration utilities such as iproute2 or ifconfig make use 
of these north-south interfaces.

In  the  east-west  direction  a  netdev  implements  some 
datapath activity.

The simplicity of the netdev abstraction has resulted in its 
wide adoption. Most port abstractions are ethernet-derived 
(meaning  they  will  have  L2  addresses  that  are  ethernet 
MAC addresses). This makes it easy to generalize a lot of 
the tooling. For example, one can run ip command on any 
netdev regardless of what it implements; one could attach 
L3 addresses to a port, point a route at it, refer to neighbors 
(eg ARP/ND) on its egress, etc. In general it means netdevs 
can be composed in a traditional packet processing graph 
with  L3  processing  (attaching  an  IPv4/6  or  even  a 
DECNET address), L2 or other more exotic setups such as 
stacking netdevs (tunneling, bonding etc).

What  netdevs do in  their  processing  of  received  packets 
varies widely. They may be used for handling hardware or 
virtual  abstractions.  A  few  examples  of  netdev 
implementations are:

• lo. The host loopback. Takes a packet and loops it 
back. The processing scope is within the host

• Physical  ports.  Variety  of  physical  controlling 
netdevs:  wired  ethernet  chips,  USB,  wireless, 
CAN, etc. typically named ethx.

• Tuntap. Handles packets shunting between kernel 
and user space. A user application writes packets 
to a file descriptor which show up on the egress of 
a  tuntap.  Likewise  reading  the file  descriptor,  a 
user space application receives packets that show 
up on the ingress of the tuntap. Tuntap is popular 
as a virtual NIC for Virtual Machines as well as in 
user-space based packet-processing.

2 The author is aware of the dummy netdev which takes in packets but 
does  not  egress  them.  Can  not  think  of  a  good  use  case  for  the 
opposite.

3  In the SNMP world, Linux ports would be equivalent to the abstraction 
known as interfaces.

Figure 1: Packet Processing Path
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• A variety of tunnels. You name it, Linux has it: 
VLAN,  GRE,  VXLAN,  IPIP,  L2TP,  Ipv6  over 
V4, etc

• MACVlan.  Started  as  a  way  to  represent 
individual MAC addresses on multi-mac physical 
ethernet ports but is getting feature-fat. It can act 
as  a  bridge  or  direct  hardware  offload  into  a 
container or host.

◦ MacVTAP does the  offloading  of  hardware 
directly onto VMs the same way MACVlan 
does it for containers

• veth. Implements a pipe pair of netdevs. Packets 
injected on the egress of one half show up on the 
ingress of the other half. Typically, one half of the 
pipe sits in a host and the other inside a container 
(although there are use cases where each half sits 
in a different container).

• Bonding/Team.  Device  aggregation,  LACP  etc. 
Has more features than a swiss-army knife.

• IP over Infiniband

• Bridge. Feature-rich IEEE bridge abstraction

• IFB.  Intermediate  device  used  to  aggregate 
processing graphs, typically for flow QoS.

• Dummy.  Takes  a  packet,  accounts  for  it  then 
drops it.

• Many,  many others.  Look at  the code (or  write 
one).

The Linux Datapath
Figure  2  expands  on  the  general  Linux  datapath  and 
exposes more details of  the cloud illustrated in figure 1. 

Several  building  blocks  are  shown.  About  all  building 
blocks and their components as described in this document 
can  be  written  as  kernel  modules.  Control  of  all  the 
datapath blocks is done from user-space (in the traditional 

unix  sense  of  separating  policy  from  mechanisms;  the 
datapath being the mechanism implementation).

In  this  document  we are  going to  focus  on parts  of  the 
Ingress  and  egress  Traffic  Control,  but  we  feel  it  is 
important to talk about the other blocks so as to provide 
context.

Netfilter
Netfilter[1]  is  a  feature-rich,  modular,  extensible packet-
processing  framework.  It  provides  a  set  of  hooks  at 
strategic Linux kernel packet-processing points that allows 
kernel modules to register callback functions. A registered 
callback function is then invoked by the kernel for every 
packet  that  traverses  the  respective  hook  within  the 
network  stack.  The  hooks  (see  figure  2)  are  labeled 
according to their position in the datapath 

• Pre-routing, 

• Forwarding, 

• Post-routing, 

• Input (to the local network stack),

• Output (from the local network stack)).

Netfilter[1] has too many powerful features that we would 
not  be  doing  it  justice  in  this  short  description,  but  we 
wanted to highlight a few features it possesses:

• Packet filtering

• All kinds of network address and port translations 
one can think of

• Multiple  layers  of  user-visible  control  and 
datapath  APIs  for  writing  applications  and 
datapath components.

• Stateful connection tracking capability known as 
conntrack[2].

Note: Figure 2 shows a bypass of the stack from ingress to 
egress.  This  is  achieved  by  the  CA  subsystem  with 
mirroring (to possibly many ports) or redirect (to one port).

Figure 2: Linux Datapath
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Linux Traffic Control Overview
Figure  2  shows  3  blocks  labeled  with  the  term  Traffic 
Control. Lets start with some concept definitions and use 
figure  3 which  shows the  egress  path and combines  the 
concept  of  Egress  Traffic  Control and  Traffic  Control  
Scheduling illustrated in figure 2.

• Queueing  Disciplines  (qdiscs)  are  scheduling 
objects which may be classful or classless. When 
classful, the qdisc has multiple classes which are 
selected by classifier filters. Given classful qdiscs 
can contain other qdiscs, a hierarchy can be setup 
to  allow  differentiated  treatment  of  packet 
groupings  as  defined  by  policy.  Each  qdisc  is 
identified via a 32-bit classid.

• Classes  are  either  queues  or  qdiscs.  Qdiscs 
further  allow for more hierarchies  as illustrated. 
The parent (in the hierarchy) qdisc will schedule 
its  inner  qdiscs/queues  using  some  defined 
scheduling  algorithm –  refer  to  a  sample  space 
further down. Each class is identified via a 32-bit 
classid.

• Classifiers are selectors of packets. They stare at 
either  packet  data  or  meta  data  and  select  an 
action to execute.  Classifiers can be anchored on 
qdiscs or classes. Each classifier type implements 
its own algorithm and is specialized. A classifier 
contains  filters  which  implement  semantics 
applicable  to  the  classifier  algorithm.  For  each 
policy  defined,  there  is  a  built  in  filter  which 
matches first based on the layer 2 protocol type.

• Actions are  executed when a resulting classifier 
filter  matches.  The  most  primitive  action  is  the 
built-in classid/flowid selector action; its role is to 
sort  which  class/flow  a  packet  belongs  to  and 
where to multiplex to in the policy graph.

A port has two default qdisc anchor points attached to it. 
The root qdisc is anchored at the egress path as illustrated 
on figure 3.  On the the ingress path the  ingress qdisc as 
shown in figure 4 exists. 

The ingress  qdisc is  a  dummy queuing discipline whose 
role is to provide anchors to the CA subsystem.

A packet received by the ingress qdisc is essentially passed 
to the CA subsystem for processing based on the policy 
graph definition.

As mentioned, each qdisc/class is identified by a 32-bit id 
known as the  classid or  flowid. The  classid is split into a 
16 bit major id and 16 bit minor id. So one would see x:y 
used where  x is  the major number often referring to the 
hierarchy  level  and  y is  the  minor  number  referring  to 
entities within a hierarchy. Major number 0xffff is reserved 
for the ingress qdisc.

It is out of scope of this paper to describe qdiscs but we 
will mention a few to provide context and show variety:

• Prio. Flows selected internally based on TOS or 
skb->priority fields. Work conserving scheduling 
algorithm based on strict priority sorting (meaning 
low prio packets may be starved).

• Pfifo. Classless qdisc with a single FIFO queue. 
Packets are scheduled out based on arrival first in 
first out (FIFO).

• Red. Classless qdisc with scheduling based on the 
RED[7] algorithm. 

• tbf.  Classless  qdisc,  non-work  conserving 
scheduling algorithm for shaping that is based on 
token bucket algorithm.

• htb. Hierarchical(classful) qdisc extension to TBF.
• Sfq.  Stochastic  fair  queueing   loosely based  on 

[5]. 
• codel.  Based on controlled delay algorithm[6].
• fq-codel. Extending codel with a sfq flavoring.
• Netem.  Provides a variety of network emulation 

functionality  for  testing  protocols  by  allowing 
mucking around with the protocol properties and 
semantics[14].

• Many  others.  The  plugin  definition  is  well 
defined. Write one today.

Although Figure 3 shows no presence of CA anchoring on 
the  lower  hierarchy  qdiscs,  it  should  be  noted  that  one 
could create policies anchored at any qdisc or class4. We 
are leaving out details because we feel that discussion is 
out of scope for this document.

Some History of Linux Traffic Control
This paper would be incomplete without a little reminder 
of the past.

4 Depends on the qdisc implementation. Most allow for this.

Figure 3: Egress Traffic Control Layout

Figure 4: Ingress Traffic Control
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Alexey  Kuznetsov  pioneered  the  Linux  Traffic  Control5 
architecture.  Alexey  submitted  the  initial  code  patches 
which first showed up in kernel version 2.1.

Werner Almesberger6 did a lot  of work in the formative 
years[10][9][8]  including  authoring  all  the  ATM related 
work.
The  author  contributed  the  action  extension  to  the  CA 
subsystem and is current maintainer of the CA subsystem.

Classifier-Action Subsystem Overview
The main role of the CA subsystem is to look at incoming 
packet  data  and/or  metadata  and  to  exercise  a  mix  of 
classifier filters and action executions to achieve a defined 
policy.
There  is  a  strong  influence  of  the  unix  philosophy  of 
composability in the approach to packet processing in the 
CA subsytem. Any classifier or action can be written as 
kernel module and a policy can be used to stitch together 
the different components for a defined outcome.

We  are  going  to  use  the  popular  tc utility  as  a  guide 
throughout  the  rest  of  this  document  to  highlight  the 
different  architectural  constructs;  however,  we   want  to 
point out that any application can use the same netlink API 
used by tc and therefore the features are not tied to tc.

Listing 1: Simple Egress Classifier-Action Policy Addition

Listing 1 shows a simple egress policy addition  using the 
tc BNF  grammar.  We  use  Listing  1  to  describe  some 
important attributes of the CA subsystem:

• Attachment  point  :  to  an  arbitrary  port  $DEV 
egress qdisc with id 1:0

• Built-in  match  :  Matches  on  ipv4  packets 
(protocol ip)

• A filter    prio  rity   of 10
• A specified  classifier  type filter  to use  :  the u32 

classifier  to  match  icmp (protocol  1 mask 0xff) 
packets.  Note each classifier will have attributes 
proprietary to itself as shown above.

• Upon filter match:
◦ Built-in  action  :  Selects  a  queue/qdisc  with 

classid 1:10
◦ Programmed  action  :  Accepts  the  packet 

(action  ok).  Note  each  programmed  action 
will  have  attributes  proprietary  to  itself  as 
shown above.

5 In addition to a lot of very creative things Alexey has done over the 
years.

6 Werner was hacking on everything from LILO (most popular Linux 
bootloader) to file systems in those days

Classifiers And Filters
As shown in figures 3 and 4, and illustrated in Listing 1, 
the qdisc is used as the policy filter attachment point. 
The  built-in  filter  is  described  in  the  policy  using  the 
protocol  ip syntax.  The  built-in  filter  lookup  is  very 
efficient since the protocol type is already in the cpu cache 
at the point the lookup happens (skb->protocol). The built-
in  match  very  quickly  discriminates  what  policy  tree  to 
use.

Illustrated in Listing 1 as well is a priority attribute tied to 
each  filter.   Filters are  kept in a  priority-ordered  list  for 
each protocol(i.e matching built-in classifier). 
It is possible to configure two filter policies on the same 
protocol  to  match the same meta/data but have different 
action execution graphs7 which then merge them to provide 
graph continuity as will be shown later. The purpose of the 
priority  field is  for  ambiguity resolution in case  of  such 
filter conflicts. Lower priority values are more important.

Listing 1 also shows the  u32 classifier  type used in  the 
policy  definition.  The  CA  subsystem  provides  a  plugin 
framework to define arbitrary classifiers. 
There  are  many classification algorithms supported,  (not 
exclusive) examples include:

• u32. Uses 32 bit value mask chunks on arbitrary 
packet offsets for filter matching. A very efficient 
protocol parse tree can be built with this low level 
classifier. 

• fw. A very simple classifier that uses the skb mark 
metadata to match.

• route. Uses ip route attribute metadata (like route 
realms) to match.

• rsvp. Classification based on RSVP[13] filtering 
definition.

• basic. A collection of smaller classifiers that can 
be combined into a more complex match. 

• BPF.  Based  on  Berkley  packet  filter[17][21]  as 
the match engine.

• Flow.  A  collection  of  various  packet  flow  and 
common  meta  data  selectors  (including 
conntracking, user ids, group ids, etc) that can be 
combined into a complex policy.

• An Openflow classifier[14]. An N-tuple classifier 
that looks at all the packet fields defined by the 
OF specs (There were about 18 at the publication 
of this document.

• Many  others.  If  you  dont  like  any,  write  your 
own.

Note  that  each  of  these  classifiers  may  have  its  own 
internal  structuring  with  its  own  elements8.   Figure  5 
illustrates a parse tree for a layout of the u32 filter setup. 

7 Sometimes this is for adding backup filter rules so when the higher 
priority filter is removed subsequent incoming packets are matched 
by the remaining lower priority filter.

8 Each element would have a 32 bit identifier. Refer to u32 classifier in 
figure 5 for an example of element ids.

tc  filter add dev $DEV parent 1:0 protocol ip prio 10 \ 
u32 match ip protocol 1 0xff \ 
classid 1:10 \ 
action ok 
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Very  efficient  parse  trees  can  be  created  for  a  specific 
setup but require attention to detail9.

Classifier Design Principles

There  are  two  guiding  principle  for  the  classifier 
architecture:

1. It  is  not  possible to  have  a  universal  classifier 
because  underlying  technologies  are  constantly 
changing and there is always some new academic 
flavor-of-the-day classification  algorithm.  For 
example, the illustrated u32 classifier matches on 
skb data using arbitrary 32-bit value/mask pairs, 
at  arbitrary  packet  offsets;  whereas  the  fw 
classifier matches on skb->mark metadata. 

2. Sometimes we need more than one classifier type, 
each with different capabilities, to properly match 
a  given  signature.  So  an  important  CA  design 
guideline is to allow for multiple classifier types 
to be used when needed by a policy. 

Based on these principles, it is possible to match first based 
on one classification algorithm (example  u32 or bpf) then 
subsequently  on  a  different  algorithm  (example  ematch 
text  classification with string matching via Boyer-Moore 
Algorithm[16] or via Knuth-Morris-Pratt algorithm[17] or 
whatever  the  latest  text  search  algorithm  is)10.  The  CA 
design  choice  has  fostered  innovation  by  not  allowing 
monopolies of chosen classification algorithms. 

Actions
Listing 1 illustrates  the actions to be executed  when the 
filter matches.
As  mentioned  earlier,  there  is  a  built-in  action  which 
selects the class/flow/queue.  Listing 1 shows the built-in 
action selecting a class  id 1:10.

9 Good fodder for automated policy generation and display.
10 Hardware  commonly  has  a  lookup  using  TCAM  which  may  be 

followed up with  lookup  on RAM but  we have  more  freedom in 
software therefore there is no need for a software architecture to be 
limited.

The policy of Listing 1 further describes that the packet be 
accepted and allowed to proceed in the processing pipeline. 
By design, actions adhere to the unix philosophy of writing 
programs that do one thing and do it well. One could for 
example  compose a policy with a  series  of  actions in  a 
unix-like  A|B|C|D pipe  where  each  subsequent  action 
refines further the previous action's work-result and just as 
in unix the pipeline could be terminated by any action in 
the  pipeline.  More  on  this  when  we  talk  about 
programmatic action pipeline.

Each action type instance maintains its own private state 
which  is  typically  updated  by  arriving  packets;  but 
sometimes by system activities (timers etc).
To illustrate a few semantics of actions, lets show some of 
the  attributes  of  the  action  programmed  from  Listing  1 
retrieved  using  tc again.  The  output  is  captured  after 
sending  10  pings  to  a  remote  location  and  is  shown in 
Listing 2.

Listing  2:  Action  Runtime  Policy  Details    

The  action  pass is  subcomponent  of  the  gact (generic 
action,  more  later).  In  this  case  several  things  are 
illustrated11:

• 32-bit  system  global  per-action-type  instance   
identifier of the action (index 1) which uniquely 
identifies the action type instance.

• how many policy graphs the action is bound   into 
(bind 1); one in this case. Actions could be shared 
on multiple policies (more on this later).

• Age  : How long ago the action was installed (32 
seconds).

• Activity  : When the last time the action was used 
(15 seconds ago). 

• A  bunch  of  standard  statistics like  how  many 
bytes(380) and packets(10) were processed by the 
action.  Other  stats  we  can  ignore  for  now  for 
brevity;  sufficient  it  is  to  say  actions  can  add 
extended stats. 

A few examples of actions include:
• nat. Does stateless NAT
• checksum.  Recomputes  IP  and  transport 

checksums and fixes them up.
• TBF policer.  A token  bucket  as  well  as  simple 

rate meter,

11 A lot of these attributes look very similar to what OpenFlow offers,  
but it should be noted that the Classifier-action subsystem existed many 
years before the birth of OpenFlow.

        action order 0: gact action pass 
         index 1 ref 1 bind 1 installed 32 sec used 15 sec 
        Action statistics: 
        Sent 980 bytes 10 pkt (dropped 0, overlimits 0 requeues 0) 
        backlog 0b 0p requeues 0 

Figure 5: u32 Classifier  Parse Tree
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• Generic  Action  (gact).  General  actions  that 
accept,  drop  packets  or  aid  in  the  CA pipeline 
processing. More on gact later.

• Pedit. A generic packet editor. It uses value/mask 
pairs and can perform various algorithms on the 
packet (xor, or, and, etc).

• Mirred. Redirects or Mirrors packet to a port
• vlan. Encap or decap VLAN tags.
• Skbedit. Edits skb metadata
• connmark.  Relates  netfilter  connection  tracking 

details to skb marks.
• Etc, etc. Write a new one.

Classifier Action Programmatic Control
The CA subsystem provides a rich low level programmatic 
interface for composing policy  to achieve a packet service.

At the core of the CA policy definition are   two classes of 
pipeline controls. For lack of a better term, we will refer to 
them as  pipeline opcodes. The first set of opcodes drives 
the classification block and the second set drives the action 
block behavior.

Each action is programmed with one or more opcodes to 
drive  the  policy  flow.  As  an  example  a  policer  action 
could  be  programmed,  when  a  rate  is  exceeded,  to 
terminate  the  pipeline  and  indicate  a  packet  is  to  be 
dropped  or  it  may  be  programmed  to  take  a  different 
processing path to lower the quality of service. Essentially, 
the intent  is programmed from the control  plane and the 
kernel CA block implements the mechanisms.

It is important at this point to introduce the generic action, 
gact, since its sole reason for existence is to propagate the 
pipeline  opcodes  for  the  purpose  of  programmability.  A 
gact instance is always programmed with a pipeline opcode 
(example in Listing 1, the action ok construct). When gact 
receives a packet, it accounts for it and then based on the 
programmed pipeline opcode helps define the flow control. 

Classification Controls
Figure  6  shows  some  of  the  controls  that  provide  the 
pipeline programmability that affect the packet service. 

A  packet  entering  the  classifier  block,  upon matching  a 
specific filter rule, gets exercised through the action block. 

Depending  on  the  specific  action's  decision,  the  result 
could be:

• Reclassify.  The  packet  is  exercised  through  the 
whole  set  of  anchored  filter  rules  from the  top 
again.  This  could  be  useful  in  the  case  of  de-
tunneling  and  the  need  to  apply  policy  on  the 
inner  packet  headers  or  tunneling  and  need  to 
apply policy to the outer headers. 

• Continue.  The packet  continues to  be processed 
by the next lower priority filter rule.

• Drop. The pipeline is terminated and the packet is 
dropped.

• Pass/OK. The pipeline is terminated, however the 
packet  is  accepted  and  is  allowed  to  proceed 
further to the stack on the ingress or go out a port 
on the egress.

• Stolen. The pipeline is terminated, the packet has 
been stolen by the action. This could mean it has 
been  injected  into  a  different  pipeline  (example 
redirected  via  mirred)  or  it  could  have  been 
queued somewhere by the action so it could be re-
injected later into some arbitrary pipeline.

Opcode: Reclassify

Lets take a look at how we could use the reclassify control 
opcode in a policy definition.

Listing 3 shows a set of rules that pop a vlan header, drop 

Listing 3: Reclassifying After De-tunelling

if the packet is from 10.0.0.21 otherwise if from any other 
host in 10.0.0.0/24 the skb metadata queue_mapping is set 
to 3 to be used further downstream.

Figure 6: filter-action flow control

#pop ingressing 802.1q vlan headers, then reclassify 
tc filter add dev $ETH parent ffff: prio 1 protocol 802.1Q \ 
u32 match u32 0 0 \
flowid 1:1 \ 
action  vlan pop reclassify 
#Drop any  packets from 10.0.0.21
tc filter add dev $ETH parent ffff: protocol ip prio 2 \
u32 match ip src 10.0.0.21/32 \
flowid 1:2 \
action drop
#Set the rest of the 10.x network packets to use skb queue map 3
tc filter add dev $ETH parent ffff: protocol ip prio 3 \
u32 match ip src 10.0.0.0/24 \
flowid 1:3 \
action skbedit queue_mapping 3
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To show the programmatic aspect, it is easier to visualize 
with a diagram. Listing 3 is visualized in Figure 7.

As can be observed, we are able to build if/else constructs 
easily  by  taking  advantage  of  filter  rule  priorities.  The 
reclassify opcode  gives  us  the  opportunity to  restart  the 
policy graph. Essentially, it  is a  loop program control in 
that  the parse operation is restarted.  Also illustrated is a 
drop opcode.

Also shown in figure 7 is a pipe opcode control construct. 
While it is not shown in the policy of listing 3, the opcode 
is configured as the default by skbedit action12. Pipe is an 
instruction to the pipeline to continue processing the next 
action (in this case there was none).

Opcode: Continue

Lets take a look at how we could use the continue control 
opcode.

Listing 4: A more complex policy

12 I looked at the source code ;->

Listing 4 shows a set of rules that pop an IFE header, dig 
deeper if the packet is from 192.168.100.159 to see if it has 
an skb mark of 0x11.

Figure 8 shows the visualization of Listing 4.
The important detail to observe here is that the  continue 
control construct essentially gives us an else if extension to 
the  existing  if/else constructs.   Also  observe  another 
exposed opcode ok.

Another way to visualize the policy is from a functional 
point  of  view.  Figure  9  shows  the  functional  view  of 
Listing 4.

Action Controls
Actions have opcodes that are specific within their pipeline 
scope. These are:

• Pipe. Equivalent to unix pipe construct
• Repeat. A loop construct
• Jumpx. Essentially a forward goto construct

Opcode: Pipe

Figure 10 shows a simple functional view of  pipe control 
of actions. 

#pop ingressing IFE headers, set all skb metadata then reclassify 
tc filter add dev $ETH parent ffff: prio 2 protocol 0xdead \ 
u32 match u32 0 0 flowid 1:1 \ 
action ife decode reclassify 
#look further if the packet is from 192.168.100.159
tc filter add dev $ETH parent ffff: prio 4 protocol ip \ 
u32 match ip dst  192.168.100.159 flowid 1:2 \ 
action continue 
#now classify based on mark
tc filter add dev $ETH parent ffff: prio 5 protocol ip \ 
handle 0x11 fw flowid 1:1 \ 
action ok 

Figure 9: Functional View of Listing 4

Figure 10: Action Control Policy Example

Figure 7: CA Control For Listing 3

Figure 8: CA Control For Listing 4

Proceedings of netdev 0.1, Feb 14-17, 2015, Ottawa, On, Canada



In the simple example shown above the packet  is  piped 
from one action to the next. This is the unix equivalent of 
A|B|C|D.  Figure 10's intent  is  achieved by programming 
each of the actions with the  pipe opcode. As in unix, the 
action work pipeline can also be terminated by conditions 
programmed into actions; sometimes this is due to reaction 
to  processing  errors  or  other  conditionals  such  as  some 
threshold being exceeded.

Opcode: Repeat

Another opcode that is restricted to the action block is the 
REPEAT opcode.  This  is  illustrated  in  Figure  11 where 
action C under some conditions may branch to action D or 
request the pipeline to re-invoke it.

Essentially the REPEAT opcode is a  loop construct. The 
scope of REPEAT opcode (as is the PIPE opcode) is only 
valid  within  the  action  block  (as  opposed  to  reclassify 
which has global effect).

An additional opcode, JUMPx, was envisioned back then 
but  was  never  fully  implemented  because  no  strong use 
cases emerged13. The author still believes it is useful and 
will implement it when time allows. JUMPx was intended 
as a way to skip x actions in a pipeline.
As mentioned earlier  the action block work-flow can be 
terminated by the opcodes OK, DROP, STOLEN. 

Classifier Action Programmatic Control Summary

We have shown that  it  is  possible to  compose  complex 
policy definitions that are made possible by the presence of 
CA opcodes.  Program control  constructs  like  if/else/else 
if/loop/(and  possibly  goto)  are  complemented  with 
programmatic statements in the form of actions and filter 
rules. 

Table  1  below  provides  the  summary  of  all  supported 
opcodes and how they are interpreted at either the classifier 
or action blocks.

13 The lack of a use cases could be due to ignorance of the feature.

Table 1: Classifier-Action Opcodes

Action Instance Sharing
Action  instances  can  be  shared  and  bound  by  multiple 
policy  graphs.  This  could  be  useful  in  complex  policy 
graphs  where  joint  accounting  or  sharing  of  resources 
amongst flows is needed.
We use Figure 12 to demonstrate a use case where several 
action instances are shared (conntrack instance 1, policer 
instance  1  and  dropper  instance  1).  Figure  11  shows  a 
setup where someone with access to the internet is sharing 
their  access  with a  next  door neighbor.  The neighbor is 
connected via the wireless port, wlan0. The owner's home 
network is connected via the wired port, eth0. The goal is 
to restrict the neighbor's download rates to no more than 
256Kbps and to have the shared 256Kbps contended for 
with the owner's downloads. 
Two  policy  rules  are  provisioned  –  one  for  the  home 
network and another for the neighbor's network (illustrated 
with red and blue colors).

All of the neighbor's incoming packets are tagged with a 
connection tracking mark of  1 using nftables.  The home 
network  traffic  is  marked  with  value  2.  The  netfilter 
subsystem stores the connection state along with the mark. 
Download  requests  go  out  the  wan  port  eth1.  Response 
packets coming in (downloads etc) arrive from the internet 
on the ingress of eth1; they are sent to connmark action 
instance  1  by  the  u32  classifier.  Connmark  instance  1 
consults the netfilter connection tracking state and maps all 
flows to the (original) connection mark.  Packets are then 
re-classified  via  the  fw  classifier  based  on  the  restored 
mark. All packets with mark 1 and 2 are then subjected to a 
shared policer  instance  1.  If  the  aggregate  rate  exceeds 

Figure  11: Action Functional Graph Showing a  
REPEAT Opcode

OPCODE Classifier Program Control Action Program Control
RECLASSIFY Start classification from the top End Action Pipeline
CONTINUE Iterate next rule in the same protocol End Action Pipeline
STOLEN/QUEUED Terminate Pipeline. Stop processing End Action Pipeline
DROP Drop packet. Terminate pipeline. Stop processing End Action Pipeline
ACCEPT/OK/PASS Terminate Pipeline. Allow packet to proceed End Action Pipeline
PIPE Terminate Pipeline. Allow packet to proceed Iterate Next Action
REPEAT Terminate Pipeline. Allow packet to proceed Repeat Action

NOT YET IMPLEMENTED NOT YET IMPLEMENTEDJUMPx

Figure 12: Neighbor Sharing
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256Kbps, the policer will pass a verdict on the neighbor's 
packets to be dropped14. The home network users packets 
on the other hand do not suffer the same fate; when the 
policer  instance  1  aggregate  rate  is  exceeded,  they  are 
passed to another policer (instance 2) which further allows 
them the luxury of using an extra 1Mbps before they are 
dropped.

Flow Aging
All  actions  keep  track  of  when  they  were  installed  and 
when  they  were  last  used.  A  simple  way  to  age  flows 
would be to add a  pipe action to a filter. A control space 
application can then be used to retire idle flow entries by 
periodically looking at the age fields.

Late binding
It  is  possible  to  create  action  instances,  give  them 
identifiers and then later bind them to one or more policies. 

Listing 5: Action Late Binding

Listing 5 shows a connmark action being instantiated and 
later  bound  to  a  flow.  Note:  That  same  action  instance 
could have been bound to multiple flows.

Extending the Classifier-Action Across Nodes
[15] Describes the InterFE(IFE) action that is capable of

extending a policy graph and spreading it across multiple 
nodes.  This is  typically done to scale instantiated policy 
graphs or  access specialized processing. One can think of 
IFE as  a  patch extending the  policy graph across  nodes 
(physical, VMs, containers, etc)

Future Work
There are several opportune activities that the community 
could undertake to get us to the next level.

14 For TCP this helps slow down the neighbor's downloads. 

Improving Usability
One of the main challenges of the TC architecture (i.e. not 
limited to the CA subsystem) in general has been usability. 
Some of  the  constructs  of  the  tc utility  BNF grammar, 
although  precise  and  complete,  are  very  low  level  and 
could  be  overwhelming  to  the  lay  person.  Werner 
Almesberger tried to improve usability with tcng[11] but 
lost interest in the project at some point. That work could 
be taken over by anyone interested.

TC and the CA subsystem in general lend themselves well 
to a programming language. As we have shown a lot of the 
necessary  programmatic  controls  (loops,  branches, 
statement executions) are already in place. It is possible to 
extend the tc BNF grammar into a higher level language 
binding.  The  author  is  very  interested  in  this  work  and 
welcomes a discussion in this area.

Functional Discovery
Earlier  versions  of  the CA subsystem(up to until  a  year 
ago) had some rudimentary capability discovery built in. 
No user  space code was added to take advantage of the 
feature, so a decade later it sounded fair to remove it. Over 
the years the author  feels he has learnt lessons in particular 
in  the  involvement  with  ForCES[22]  and  working  with 
variety of hardware with equivalent functions but differing 
capabilities  that  he  feels  it  is  time  to  for  a  fresh 
perspective;  however,  that  level  of  discussion  is  out  of 
topic for this paper.

Hardware Offloading
Given the architecture  of the CA subsystem (the control 
constructs and functional  statement expression),  it  would 
be  very  fitting  to  implement  the  whole  architecture  in 
hardware. Infact on reviewing a lot of hardware layout one 
would observe there is already a lot of synergy with the TC 
CA architectural definitions.

Figure  13  shows  a  Realtek  RTL8366xx  datapath  and 
mapping to TC.

 

While the RTL8366xx is a tiny chip, a lot of other ASICs 
have similar architectural  layout but different capabilities 
and  capacities.  There  are  challenges  that  need  to  be 
addressed with handling the capacitance mismatch between 
what hardware offers and how policy maps it. We have a 

 tc actions add  action connmark zone 3 index 10
tc filter add dev $ETH parent ffff: pref 11 protocol ip \ 
u32 match ip protocol 17 0xff  flowid 1:3 action connmark index 10

Figure  13:  Distribute  Policy  Graph  Across  2  
Processing Nodes via IFE action

Figure 13: Realtek RTL8366xx Datapath
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lot of community experience in dealing with quarks (from 
hardware  bugs)  and  feature  differences  that  can  be 
leveraged  in  getting  this  part  right.  As  can  be  observed 
from figure 13, there is a very close resemblance between 
the hardware datapath and the Linux datapath. 

The  author  believes  there  is  strong  need  for  a  tight 
coupling between the Linux control interfaces, which are 
already  widely  deployed,  and  hardware  offload.  The 
requirement  is  necessary  to  provide  transparency  of  the 
tooling. There is a huge ecosystem around linux tooling in 
place and while it is possible to have new tools, it should 
only be done if the current toolsets cannot be re-factored in 
order  to  provide  smooth  continuity.  In  other  words  the 
hardware  ASICs  provide  drivers  that  are  exercised 
transparently by the current Linux tools and APIs.
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