
Communicating between the kernel and

user-space in Linux using Netlink Sockets:

Source code reference

Pablo Neira Ayuso

This document is the continuation of Communication between the kernel and
user-space in Linux using Netlink Sockets published in Software Practise and
Experience. This part covers the programming aspects of Netlink and GeNetlink
with explained source code examples.

1 PROGRAMMING NETLINK SOCKETS

Adding Netlink support from scratch for some Linux kernel subsystem requires
some coding in user and kernel-space. There are a lot of common tasks in
parsing, validating, constructing of both the Netlink header and TLVs that are
repetitive and easy to get wrong. Instead of replicating code, Linux provides a
lot of helper functions.

Moreover, many existing subsystems in the Linux kernel already support
Netlink sockets, thus, the kernel-space coding could be skipped. However, for
the purpose of this tutorial we cover both scenarios: programming Netlink from
user and kernel-space 1.

1.1 Netlink sockets from kernel-space

We have coded a simple Linux kernel module that implements Netlink support
to print the ”Hello world” message 2 when it receives a message from user-space.
In Figure. ??, we have represented the sequence diagram of our example.

We use the Listing. ?? as reference to start explaining the steps that you
have to follow to add a new Netlink-based interface, that are:

1. Reserve a Netlink bus for your new kernel subsystem: you have to edit
include/linux/netlink.h to add your new Netlink bus 3. You may also

1Adding new Netlink busses is almost guaranteed to be reject for mainline inclusion unless
that you have a good reason to do so. The current policy is to use GeNetlink that we cover
in this work in Section ??. It is a good idea to contact Linux networking developers via the
linux-netdev development mailing-list before going ahead with your new Netlink subsystem.

2The message is stored in the kernel logging ring buffer which is usually stored in the log
files by syslogd or, alternatively, it can be displayed by means of dmesg.

3We have selected NETLINK EXAMPLE which is not used in the Linux kernel 2.6.30

1

Figure 1: Hello world example via Netlink

include the bus definition in your code to avoid modifying the Linux kernel
source code (lines 7-9). However, you have to make sure that you use an
available Netlink bus between the existing slots. Netlink busses are unique
so you have to avoid possible overlaps with other kernel subsystems.

2. Include the appropriate headers (lines 1-5), in particular it is important
to include the headers that define the prototypes of the functions required
to register a new Netlink subsystem (lines 3-5) that are the generic BSD
socket infrastructure (line 3), the generic network socket buffer (line 4)
and the Netlink definitions and prototypes (line 5).

3. Call netlink kernel create() in the module initialization path to create the
Netlink kernel socket: you have to pass a callback that is invoked when
your new Netlink bus receives a message from user-space (see lines 23-
28). The function netlink kernel create() returns a pointer to the sock
structure, which is used to store the kernel part of a generic BSD socket.

4. Call netlink kernel release() in the module exit path, which is executed
when the Linux kernel module is removed to unregister the given Netlink
socket bus (lines 38).

1 #include <l i nux / ke rne l . h>
2 #include <l i nux /module . h>
3 #include <net / sock . h>
4 #include <l i nux / skbu f f . h>
5 #include <l i nux / n e t l i n k . h>
6

7 #ifndef NETLINK EXAMPLE 21
8 #define NETLINK EXAMPLE 21
9 #endif

10

11 #define NLEX GRP MAX 0
12

13 stat ic struct sock ∗ n l sk ;
14

15 stat ic void
16 n l c a l l b a c k (struct s k b u f f ∗ skb)
17 {

2

Figure 2: Update of the variable myvar via Netlink

18 pr in tk (” He l lo world\n”) ;
19 }
20

21 stat ic int i n i t n l e x a m p l e i n i t (void)
22 {
23 n l sk = n e t l i n k k e r n e l c r e a t e (& i n i t n e t ,
24 NETLINK EXAMPLE,
25 NLEX GRP MAX,
26 n l c a l l b a c k ,
27 NULL,
28 THIS MODULE) ;
29 i f (n l sk == NULL) {
30 pr in tk (KERN ERR ”Can ’ t c r e a t e n e t l i n k \n”) ;
31 return −ENOMEM;
32 }
33 return 0 ;
34 }
35

36 void e x i t n l example ex i t (void)
37 {
38 n e t l i n k k e r n e l r e l e a s e (n l sk) ;
39 }
40

41 modu l e in i t (n l e x a m p l e i n i t) ;
42 module ex i t (n l example ex i t) ;

Listing 1: Simple Netlink kernel module

Note that our example module that we have represented in Listing. ?? reg-
isters no multicast groups (see constant NLEX GRP MAX which has been set
to zero in line 11) that has been passed as parameter to netlink kernel create()
in lines 23-28).

Using Netlink to print some output when a message is received is a good
starting point, but it is not very useful. For that reason, we present a new
example that exposes the variable myvar to user-space by means of Netlink in
Listing. ?? and Listing. ??. This example supports two new operations: a)
update the value of myvar and b) get the current value of myvar.

In Figure. ??, we have represented the sequence diagram of an update of the

3

variable myvar. With regards to coding, we initially have to declare these two
new actions in the header file of the Linux kernel module in Listing. ??.

1 #ifndef NLEXAMPLE H
2 #define NLEXAMPLE H
3

4 #ifndef NETLINK EXAMPLE
5 #define NETLINK EXAMPLE 21
6 #endif
7

8 enum nlexample msg types {
9 NLEX MSG BASE = NLMSG MIN TYPE,

10 NLEX MSG UPD = NLEX MSG BASE,
11 NLEX MSG GET,
12 NLEX MSG MAX
13 } ;
14

15 enum n l example a t t r {
16 NLE UNSPEC,
17 NLE MYVAR,
18 /∗ add your new a t t r i b u t e s here ∗/
19 NLE MAX,
20 } ;
21 #define NLE MAX (NLE MAX − 1)
22

23 #define NLEX GRP MYVAR (1 << 0)
24 #endif

Listing 2: Example header file

This listing contains the following sections that are:

1. The Netlink bus that we are using to register our new Netlink subsystem
(lines 4-6), as we previously did in our ”Hello World” example.

2. The definition of supported actions (lines 8-13): the actions are mapped to
Netlink message types starting by 16 to skip the reserved control message
types from 0 to 15. We have defined NLEX MSG UPD to update the
value of myvar, and NLEX MSG GET to obtain the current value.

3. The definition of the attribute types (lines 15-20): we have defined the
attribute NLE MYVAR which can be used to store the new value of myvar
in the TLV Netlink payload. This new attribute can be used in messages
going from user to kernel-space to set the new value of myvar, but it can
also be used to encapsulate the value of myvar for messages going from
kernel to user-space as a result of a request to obtain the current value.

4. The definition of the only multicast group supported by this example
(NLEX GRP MYVAR in line 23) that allows you to subscribe to event
notifications of changes in myvar.

In Listing. ??, we have replaced the nl callback() function that we have
previously shown in Listing. ?? (line 16) to support the new actions defined in
Listing. ??.

4

1 stat ic const
2 struct n l a p o l i c y n l e x p o l i c y [NLE MAX+1] = {
3 [NLE MYVAR] = { . type = NLA U32 } ,
4 } ;
5

6 stat ic int
7 n l s t e p (struct s k b u f f ∗skb ,
8 struct nlmsghdr ∗nlh)
9 {

10 int e r r ;
11 struct n l a t t r ∗cda [NLE MAX+1] ;
12 struct n l a t t r ∗ a t t r = NLMSG DATA(nlh) ;
13 int a t t r l e n = nlh−>nlmsg len − NLMSG SPACE(0) ;
14

15 i f (s e c u r i t y n e t l i n k r e c v (skb , CAP NET ADMIN))
16 return −EPERM;
17

18 i f (nlh−>nlmsg len < NLMSG SPACE(0))
19 return −EINVAL;
20

21 e r r = n l a p a r s e (cda , NLE MAX,
22 att r , a t t r l e n , n l e x p o l i c y) ;
23 i f (e r r < 0)
24 return e r r ;
25

26 return n l s t e p 2 (cda) ;
27 }
28

29 stat ic void
30 n l c a l l b a c k (struct s k b u f f ∗ skb)
31 {
32 n e t l i n k r c v s k b (skb , &n l s t e p) ;
33 }

Listing 3: Extending the nl callback function

In this new version of nl callback() (lines 29-33), we call netlink rcv skb() (line
32) which is a generic function that is used to perform initial sanity checkings on
the message received. This function also appropriately handles Netlink message
batches coming from user-space. The sanity checkings consists of the following:

1. Check if the message contains enough room for the Netlink header.

2. Check if the NLM F REQUEST flag has been set, which is used to tell
that this message is going from user to kernel-space.

3. Skip control messages if they are sent from user-space: Netlink replies
with an acknowledgment message in this case. User-space applications do
not usually send control messages to user-space.

4. Check if the NLM F ACK flag has been set, in that case, the user-space
process has explicitly requested an acknowledgment from kernel-space to
make sure that the request has been performed successfully.

5

Once the sanity checkings have been passed, the netlink rcv skb() function
invokes the callback function passed as argument, which we have called nl step()
(lines 6-27 in Listing. ??). The nl step() function initially performs further non-
generic sanity checkings, one of them to ensure that only user-space processes
with CAP NET ADMIN capabilities (that is, the process can perform network
administration tasks. Generally speaking, processes that run as superuser have
this capability) (lines 15-16) can send messages to kernel-space. Then, we pro-
ceed to parse the payload of the Netlink message that contains the attributes in
TLV format. In order to perform the payload parsing, we use nla parse() which
takes an array of pointers to Netlink attributes (see lines 21-22), whose size is
the maximum number of attributes plus one (line 11), and updates the array
to allow easy access to the attributes. The parsing includes the data validation
to ensure that the data type stored in the attribute payload is correct (line 22,
fifth parameter). This is done by means of a structure that defines the corre-
spondence between the type stored in the attribute payload and the attribute
type (lines 1-4). If there are problems in the parsing, an error is reported to
user-space.

Once the parsing has been done, we call the function nl step2() (line 26)
which is implemented in Listing. ??.

1 stat ic int myvar ;
2

3 stat ic int
4 n l s t e p 2 (struct n l a t t r ∗cda [] ,
5 struct nlmsghdr ∗nlh)
6 {
7 int echo = nlh−>n l m s g f l a g s & NLM F ECHO;
8 int pid = nlh−>nlmsg pid ;
9

10 switch (nlh−>nlmsg type) {
11 case NLEX MSG UPD:
12 i f (! cda [NLE MYVAR])
13 return −EINVAL;
14

15 myvar = n la ge t u32 (cda [NLE MYVAR]) ;
16 n l e x n o t i f y (echo , pid) ;
17 break ;
18 case NLEX MSG GET:
19 n l e x u n i c a s t (pid) ;
20 break ;
21 } ;
22 return 0 ;
23 }

Listing 4: nl step2() function

This function takes the array of Netlink attributes and it handles the message
depending on its type according to the two possible actions that we have already
defined in Listing. ??. We handle the message depending on its type, that can
be:

• NLEX MSG UPD: we check if the NLE MYVAR attribute is set (lines 12-
13), in that case, it takes the 32-bits value and it updates myvar (line 15).

6

Otherwise, it returns invalid argument (EINVAL) to report a malformed
message since a mandatory attribute is missing.

• NLEX MSG GET: it creates and delivers a Netlink message to user-space
containing the current value of myvar via unicast. We have implemented
the unicast deliver by means of the function nlex unicast(), which is im-
plemented in Listing. ??.

The NLEX MSG UPD command also notifies to user-space listeners that
the value of myvar has changed (line 16 in Listing. ??). This event notification
is implemented by means of the nlex notify() function in Listing. ??.

1 stat ic int
2 n l e x n o t i f y (int rep , int pid)
3 {
4 struct s k b u f f ∗ skb ;
5

6 skb = nlmsg new (NLMSG DEFAULT SIZE,GFP KERNEL) ;
7 i f (skb == NULL)
8 return −ENOMEM;
9

10 nlmsg put (skb , pid , rep , NLEX MSG UPD, 0 , 0) ;
11 NLA PUT U32(skb , NLE MYVAR, myvar) ;
12

13 n lmsg not i f y (nlsk , skb , pid ,
14 NLEX GRP MYVAR,
15 rep , GFP KERNEL) ;
16 return 0 ;
17

18 n l a p u t f a i l u r e :
19 return −1;
20 }

Listing 5: Broadcast notification of changes in myvar

This function allocates memory for the Netlink message that will be send
to the user-space listeners that are subscribed to the NLEX GRP MYVAR
group. The message is stored in a network buffer of one memory page size
(NLMSG DEFAULT SIZE is the size of one memory page minus the header of
a Netlink message) for performance reasons (line 6).

We use the function nlmsg put() to add the netlink header (line 10) and
the NLA PUT U32() macro to add the value of myvar in TLV format as the
payload of the Netlink message (line 11). To deliver the Netlink message, we
use nlmsg notify() which sends notifications to all user-space listeners that are
subscribed to the Netlink multicast group that alerts about changes in myvar.
This function includes the Port-ID in the message (third parameter, line 13)
to report other listeners that this change was triggered by another user-space
process with that Port-ID. The multicast group is also passed (line 14) to tell
Netlink to what multicast group it has to deliver the change report.

Note that the nlmsg notify() function also supports the NLM F ECHO flag
that, if it is set, results in an unicast delivery to the origin of the change. This is
useful in case that the origin is also subscribed to changes via multicast. Thus,

7

it allows the origin to identify that the change report that it has received was
generated by itself.

In Listing. 6, we have implemented nlex unicast which performs the al-
location (lines 6-8), building (lines 10-11) and delivery (line 13) of a Netlink
message via unicast as response to a request to get the current value of myvar
(NLEX MSG GET message).

1 stat ic int
2 n l e x u n i c a s t (int pid)
3 {
4 struct s k b u f f ∗ skb ;
5

6 skb = nlmsg new (NLMSG DEFAULT SIZE,GFP KERNEL) ;
7 i f (skb == NULL)
8 return −ENOMEM;
9

10 nlmsg put (skb , pid , 0 , NLEX MSG UPD, 0 , 0) ;
11 NLA PUT U32(skb , NLE MYVAR, myvar) ;
12

13 n lmsg un icas t (nlsk , skb , pid) ;
14 return 0 ;
15

16 n l a p u t f a i l u r e :
17 return −1;
18 }

Listing 6: Unicast delivery to obtain the value of myvar

1.2 Netlink sockets in user-space

Netlink sockets are implemented on top of the generic BSD sockets interface.
Thus, programming Netlink sockets in user-space is similar to programming
common TCP/IP sockets. However, we have to take into consideration the
aspects that make Netlink sockets different from other socket families, more
relevantly:

1. Netlink sockets do not hide protocol details to user-space as other protocols
do. In fact, Netlink passes the whole message, including the Netlink header
and attributes in TLV format as well as multi-part messages, to user-
space. This makes the data handling different than common TCP/IP
sockets since the user-space program have to appropriately parse and build
Netlink messages according to its format. However, there are no standard
facilities to perform these tasks so you would need to implement your own
functions or use some existing library to assist your development.

2. Errors that comes from Netlink and kernel subsystems are not returned by
recvmsg() as an integer. Instead, errors are encapsulated in the Netlink er-
ror message. There is one exception to this rule that is the No buffer space
available (ENOBUFS) error, which is not encapsulated since its purpose
is to report that we cannot enqueue a new Netlink message. Standard

8

generic socket errors, like Resource temporarily unavailable (EAGAIN),
which are commonly used together with polling primitives, like poll() and
select(), are still returned as an integer by recvmsg().

In order to simplify the work with Netlink sockets, we propose in this work
the use of libmnl [?], written in C, which is a minimalistic user-space Netlink
library oriented to Netlink developers. This library allows you to re-use code
and it avoids re-inventing the wheel. The main features of this library are:

1. Small: the shared library requires around 20KB in a x86-based computer.

2. Simple: this library avoids complexity and elaborated abstractions that
tend to hide Netlink details.

3. Easy to use: the library simplifies the work for Netlink-wise developers.
It provides functions to make socket handling, message building, parsing
and sequence tracking, easier.

4. Easy to re-use: you can use the library to build your own abstraction layer
on top.

5. Decoupling: the interdependency of the main bricks that compose the
library are reduced, eg. the library provides helper facilities like a callback-
oriented API to handle Netlink messages but the programmer is not forced
to use it.

There are other existing user-space Netlink libraries like:

• libnetlink which was the primer library, written in C. It was developed by
A.Kuznetsov and distributed within the Linux’s advanced routing tools
iproute2 [?]. This library is intended for internal use of the iproute2 com-
mand line tools.

• libnl [?] is a complete library, also written in C, that aims to simplify
the work with Netlink sockets. The development was started 2003 by
Thomas Graf, it is currently the recommended library in the Linux kernel
documentation [?]. It provides an object-oriented abstraction layer to
forget about Netlink sockets details. Thus, obtaining information from
Netlink kernel subsystems is fairly easy and it allows very rapid application
development for non-Netlink developers. This library hides many details
of Netlink, for the purpose of this work, we have preferred to focus on a
library that adds very few abstractions.

1.3 Netlink sockets in user-space using libmnl

We have written two user-space programs using the libmnl library for our ex-
ample Linux kernel module that we have exposed in Section ??, they are:

9

Figure 3: Update of the myvar variable via Netlink

• change.c that is used to change the current value of myvar, the sequence
diagram of this program is represented in Figure. ?? and the implemen-
tation in Listing 7.

• event.c which allows to listen to asynchronous event notification that re-
port changes in the myvar value. This program is available in Listing 8. In
Figure. ??, we have represented the sequence diagram of the asynchronous
event notification.

In Listing 7, we initially reserve room (line 17) for the Netlink header in
a large enough buffer that we have previously allocated in the stack (line 11).
Then, we fill the Netlink header fields with the message type, flags and sequence
number (lines 18-20). The message type (line 18) is NLEX MSG UPD in this
case to tell the kernel module that this message contains an update for myvar.
With regards to the flags, we have set NLM F REQUEST which is mandatory
for requests that go from user to kernel-space and NLM F ACK to ask for an
explicit Netlink error message from kernel-space containing the result of the
operation (0 in case of success, otherwise a standard errno value). Finally,
to generate the sequence numbering (line 20), we have selected the function
time() which returns the seconds since 1970. The kernel uses the same sequence
number in the acknowledgment and data replies, thus, the sequence number
provides a way to identify that a given message comes as reply of certain request.
Therefore, there is no need to use incremental sequence numbers.

1 #include <s t d i o . h>
2 #include <s t d l i b . h>
3 #include <un i s td . h>
4

5 #include <l ibmnl / l ibmnl . h>
6

7 #include ” nlexample . h”
8

9 int main (void)
10 {
11 char buf [g e t p a g e s i z e ()] ;
12 struct nlmsghdr ∗nlh ;
13 struct mnl socket ∗ nl ;

10

14 int ret , numbytes ;
15 unsigned int seq , oper ;
16

17 nlh = mnl nlmsg put header (buf) ;
18 nlh−>nlmsg type = NLEX MSG UPD;
19 nlh−>n l m s g f l a g s = NLM F REQUEST |NLM F ACK;
20 nlh−>nlmsg seq = seq = time (NULL) ;
21

22 mnl at t r put u32 (nlh ,NLE MYVAR, 1 0) ;
23

24 numbytes = mnl n lmsg get l en (nlh) ;
25

26 nl = mnl socket open (NETLINK EXAMPLE) ;
27 i f (n l == NULL) {
28 pe r ro r (” mnl socket open ”) ;
29 e x i t (EXIT FAILURE) ;
30 }
31

32 r e t = mnl socket b ind (nl , 0 , 0) ;
33 i f (r e t == −1) {
34 pe r ro r (” mnl socket b ind ”) ;
35 e x i t (EXIT FAILURE) ;
36 }
37

38 r e t = mnl socket sendto (nl , nlh , numbytes) ;
39 i f (r e t == −1) {
40 pe r ro r (” mnl socket send ”) ;
41 e x i t (EXIT FAILURE) ;
42 }
43

44 r e t = mnl socket recv f rom (nl , buf , s izeof (buf)) ;
45 i f (r e t == −1) {
46 pe r ro r (” recvfrom ”) ;
47 e x i t (EXIT FAILURE) ;
48 }
49

50 r e t = mnl cb run (buf , ret , seq ,NULL,NULL) ;
51 i f (r e t == −1) {
52 pe r ro r (” c a l l b a c k ”) ;
53 e x i t (EXIT FAILURE) ;
54 }
55 m n l s o c k e t c l o s e (n l) ;
56 }

Listing 7: change.c program

Once we have filled the Netlink header, we proceed with the TLV-payload
building. In our case, the payload is simple since it is only composed of one
attribute, which is NLE MYVAR (line 22). This Netlink attribute contains the
new value that we want to assign to the kernel-space variable myvar.

Now, it is time to create an user-space Netlink socket to send the message
that we have built to kernel-space. Basically, we open the Netlink socket (line
26), then bind it (line 32) to no multicast groups (second parameter, line 32)
and use the automatic Port-ID selection facility by using zero (third parameter,
line 32).

11

Figure 4: Subscribe to asynchronous event reports of myvar changes via Netlink

The Netlink message is sent to kernel-space (line 38). Since we have explicitly
requested an acknowledgment, we wait for it (line 44). The Netlink message
received is passed to the callback runqueue which returns -1 (line 50) and it
sets errno appropriately in case of error. Then, the user-space Netlink socket is
closed (line 55).

We can subscribe to changes of the variable myvar by means of the asyn-
chronous notification facility that Netlink provides. In Figure. ??, we have rep-
resented the sequence diagram of the subscription to events that report about
changes in the variable myvar.

In Listing 8, we have implemented the event subscription. Basically, we open
an user-space Netlink socket (line 30) and bind it (line 36) to the multicast group
NLEX GRP MYVAR (second parameter, line 36). Then, we wait to receive
Netlink messages that contain updates of the variable (lines 41-48).

Once we receive a Netlink message, we pass it to the callback runqueue
which invokes the data cb() function (line 9-21). This function parses the TLV-
based payload of the Netlink message (line 15) and it initializes an array of
pointers that contain the address of the attributes (variable tb in line 15, second
parameter). Thus, we can easily access the attributes to retrieve the value of
the attribute and print it (lines 17-18).

1 #include <s t d i o . h>
2 #include <s t d l i b . h>
3 #include <un i s td . h>
4

5 #include <l ibmnl / l ibmnl . h>
6

7 #include ” nlexample . h”
8

9 stat ic int
10 data cb (const struct nlmsghdr ∗nlh , void ∗data)
11 {
12 struct n l a t t r ∗ tb [NLE MAX+1] ;
13 struct n l a t t r ∗ a t t r ;
14

15 mnl a t t r pa r s e (nlh , tb ,NLE MAX) ;
16 i f (tb [NLE MYVAR])
17 p r i n t f (”myvar=%u\n” ,
18 mnl a t t r g e t u32 (tb [NLE MYVAR])) ;

12

19

20 return MNL CB OK;
21 }
22

23 int main ()
24 {
25 struct mnl socket ∗ nl ;
26 char buf [g e t p a g e s i z e ()] ;
27 struct nlmsghdr ∗nlh = (struct nlmsghdr ∗) buf ;
28 int r e t ;
29

30 nl = mnl socket open (NETLINK EXAMPLE) ;
31 i f (n l == NULL) {
32 pe r ro r (” mnl socket open ”) ;
33 e x i t (EXIT FAILURE) ;
34 }
35

36 i f (mnl socket b ind (nl ,NLEX GRP MYVAR, 0) < 0){
37 pe r ro r (” mnl socket b ind ”) ;
38 e x i t (EXIT FAILURE) ;
39 }
40

41 r e t = mnl socket recv f rom (nl , buf , s izeof (buf)) ;
42 while (r e t > 0) {
43 r e t = mnl cb run (buf , ret , 0 , data cb ,NULL) ;
44 i f (r e t <= 0)
45 break ;
46 r e t = mnl socket recv f rom (nl , buf ,
47 s izeof (buf)) ;
48 }
49 i f (r e t == −1) {
50 pe r ro r (” e r r o r ”) ;
51 e x i t (EXIT FAILURE) ;
52 }
53

54 m n l s o c k e t c l o s e (n l) ;
55

56 return 0 ;
57 }

Listing 8: event.c program

2 PROGRAMMING GENETLINK

This section provides an overview on the GeNetlink programming from both
user and kernel-space.

2.1 Programming GeNetlink from kernel-space

We have ported the previous example Linux kernel module that uses Netlink
to export the variable myvar to use GeNetlink. To do so, we have defined two
commands in Listing. ??:

• NLEX CMD UPD, that allows you to update the current value of myvar.

13

• NLEX CMD GET, that is used to retrieve the current value of myvar via
unicast.

This command values are used in the command field in the GeNetlink header.
With regards to the attribute definitions (lines 10-15), we use the same decla-
rations described in our previous example in Section ??.

1 #ifndef NLEXAMPLE H
2 #define NLEXAMPLE H
3

4 enum nlexample msg types {
5 NLEX CMD UPD = 0 ,
6 NLEX CMD GET,
7 NLEX CMD MAX
8 } ;
9

10 enum n l example a t t r {
11 NLE UNSPEC,
12 NLE MYVAR,
13 NLE MAX,
14 } ;
15 #define NLE MAX (NLE MAX − 1)
16

17 #define NLEX GRP MYVAR 1
18

19 #endif

Listing 9: GeNetlink example header file

In Listing. ??, we show the structures that are required to register the new
GeNetlink family, they are:

1. The GeNetlink family structure (lines 11-17) that includes the type of ID
number (line 12) which is automatically set by GeNetlink since GENL ID GENERATE
is used. Then, the unique string name that is nlex, and the maximum num-
ber of TLV attributes that can contain the GeNetlink message (line 16).
The version field (line 15) allows to declare different versions of the same
family, this can be used in the future to introduce changes in the GeNetlink
message format, and operations without breaking backward compatibility.

2. The family operations (lines 23-32), that include the two commands sup-
ported. This structure links the command type (lines 25 and 29) with a
callback function, which is the doit field in the structure (lines 26 and 30).
Thus, if a GeNetlink message for this family is received, it is passed to the
appropriate callback.

3. The family multicast group (lines 19-21), that is only one group in this
case that is identified by the string name example. This group allows
user-space listeners to subscribe to asynchronous reports on changes in
myvar.

14

1 #include <l i nux / ke rne l . h>
2 #include <l i nux /module . h>
3 #include <l i nux / skbu f f . h>
4 #include <l i nux / g e n e t l i n k . h>
5 #include <net / g e n e t l i n k . h>
6

7 #include ” genlexample . h”
8

9 stat ic int myvar ;
10

11 stat ic struct g e n l f a m i l y g e n l e x f a m i l y = {
12 . id = GENL ID GENERATE,
13 . name = ” nlex ” ,
14 . h d r s i z e = 0 ,
15 . v e r s i o n = 1 ,
16 . maxattr = NLE MAX,
17 } ;
18

19 stat ic struct g e n l m u l t i c a s t g r o u p genl ex mc = {
20 . name = ”example” ,
21 } ;
22

23 stat ic struct gen l op s g e n l e x o p s [] = {
24 {
25 . cmd = NLEX CMD GET,
26 . do i t = genl get myvar ,
27 } ,
28 {
29 . cmd = NLEX CMD UPD,
30 . do i t = genl upd myvar ,
31 } ,
32 } ;

Listing 10: GeNetlink example declarations

Once the appropriate structures have been declared, we proceed to register
them into GeNetlink. In our example, the registration is done in the initializa-
tion and exit path of the Linux kernel module. The code snippet in Listing. ??
contains the registration (lines 1-27) and the unregistration (lines 29-32) rou-
tines.

1 stat ic int i n i t n l e x a m p l e i n i t (void)
2 {
3 int i , r e t = −EINVAL;
4

5 r e t = g e n l r e g i s t e r f a m i l y (& g e n l e x f a m i l y) ;
6 i f (r e t < 0)
7 goto e r r ;
8

9 for (i = 0 ; i < ARRAY SIZE(g e n l e x o p s) ; i++) {
10 r e t = g e n l r e g i s t e r o p s (& gen l ex f am i l y ,
11 &g e n l e x o p s [i]) ;
12 i f (r e t < 0)
13 goto e r r u n r e g i s t e r ;
14 }
15

15

16 r e t = g e n l r e g i s t e r m c g r o u p (& gen l ex f am i l y ,
17 &genl ex mc) ;
18 i f (r e t < 0)
19 goto e r r u n r e g i s t e r ;
20

21 return r e t ;
22

23 e r r u n r e g i s t e r :
24 g e n l u n r e g i s t e r f a m i l y (& g e n l e x f a m i l y) ;
25 e r r :
26 return r e t ;
27 }
28

29 void e x i t n l example ex i t (void)
30 {
31 g e n l u n r e g i s t e r f a m i l y (& g e n l e x f a m i l y) ;
32 }
33

34 modu l e in i t (n l e x a m p l e i n i t) ;
35 module ex i t (n l example ex i t) ;

Listing 11: GeNetlink family registration and unregistration routines

The initialization consists of the registration of the new GeNetlink family
(lines 5-7), the registration of the operations (lines 9-14) and the registration of
the multicast group (lines 16-19).

The operation to retrieve the current value of myvar is implemented in the
Listing. ??. This function consists of the allocation of the Netlink message (lines
7-9), the initialization of the GeNetlink header (lines 11-12) and the addition of
the TLV-based payload that contains the current value of the myvar (line 14).
Then, the GeNetlink message is delivered via unicast to the user-space process
(line 16).

1 stat ic int
2 genl get myvar (struct s k b u f f ∗skb ,
3 struct g e n l i n f o ∗ i n f o)
4 {
5 struct s k b u f f ∗msg ;
6

7 msg = nlmsg new (NLMSG DEFAULT SIZE,GFP KERNEL) ;
8 i f (msg == NULL)
9 return −ENOMEM;

10

11 genlmsg put (msg , in fo−>snd pid , in fo−>snd seq ,
12 &gen l ex f am i l y , 0 , NLEX CMD UPD) ;
13

14 NLA PUT U32(msg , NLE MYVAR, myvar) ;
15

16 gen lmsg un icas t (msg , in fo−>snd pid) ;
17

18 return 0 ;
19

20 n l a p u t f a i l u r e :
21 return −ENOBUFS;
22 }

16

Listing 12: Get myvar routine

The update of the value of myvar via the example GeNetlink family is im-
plemented in the Listing. ??.

1 stat ic int
2 genl upd myvar (struct s k b u f f ∗skb ,
3 struct g e n l i n f o ∗ i n f o)
4 {
5 struct s k b u f f ∗msg ;
6

7 i f (! in fo−>a t t r s [NLE MYVAR])
8 return −EINVAL;
9

10 myvar = n la ge t u32 (in fo−>a t t r s [NLE MYVAR]) ;
11

12 msg = nlmsg new (NLMSG DEFAULT SIZE, GFP KERNEL) ;
13 i f (msg == NULL)
14 return −ENOMEM;
15

16 genlmsg put (msg , in fo−>snd pid , in fo−>snd seq ,
17 &gen l ex f am i l y , 0 , NLEX CMD UPD) ;
18

19 NLA PUT U32(msg , NLE MYVAR, myvar) ;
20

21 gen lmsg mul t i cas t (msg , 0 , genl ex mc . id ,
22 GFP KERNEL) ;
23 return 0 ;
24

25 n l a p u t f a i l u r e :
26 return −ENOBUFS;
27 }

Listing 13: Update myvar routine

Initially, this routine verifies that the message coming from user-space con-
tains the NLE MYVAR attribute with the new myvar value that user-space
wants to set (lines 7-8). If the attribute is missing, the routine returns an er-
ror to report that the message is invalid since the NLE MYVAR attribute is
mandatory. If the message contains the attribute, the routine updates the value
of the variable myvar (line 10). Since user-space process can subscribe to the
example multicast to track changes in the myvar variable, this routine has to
report the change in the variable. The reporting consists of allocating mem-
ory for the Netlink message (lines 12-14), filling the GeNetlink header (lines
16-17) with the Port-ID of the process that has changed the variable (second
parameter), the same sequence number used in the message received from user-
space (third parameter), the GeNetlink family (line 17, fourth parameter) and
the Netlink message flags (fifth parameter) which are none in this case, and
the command type of the message (sixth parameter). To conclude the message
building, the routine adds the new value of myvar in TLV format as payload
of the GeNetlink message. Then, the message is delivered to the user-space
listeners that are subscribed to the example group (lines 21-22).

17

2.2 Programming GeNetlink from user-space

Since the family and multicast IDs are assigned in run-time, we initially have
to look up for the IDs to send requests and to subscribe to GeNetlink multi-
cast groups from user-space. For that task, we use a program that takes the
GeNetlink family name as first parameter, it sends a request to the GeNetlink
control family nlctrl which is the only family with a fixed family ID, and it
displays the family ID and the list of available multicast groups and their cor-
responding IDs. The body of the main() function of this resolver has been
represented in Listing. 14.

1 #include <s t d i o . h>
2 #include <s t d l i b . h>
3 #include <un i s td . h>
4

5 #include <l ibmnl / l ibmnl . h>
6 #include <l i nux / g e n e t l i n k . h>
7

8 int main (int argc , char ∗argv [])
9 {

10 struct mnl socket ∗ nl ;
11 char buf [g e t p a g e s i z e ()] ;
12 struct nlmsghdr ∗nlh ;
13 struct genlmsghdr ∗ gen l ;
14 int ret , numbytes , h d r s i z ;
15 unsigned int seq ;
16

17 i f (argc != 2) {
18 p r i n t f (”%s [fami ly name]\n” , argv [0]) ;
19 e x i t (EXIT FAILURE) ;
20 }
21

22 nlh=mnl nlmsg put header (buf) ;
23 nlh−>nlmsg type =GENL ID CTRL ;
24 nlh−>n l m s g f l a g s=NLM F REQUEST | NLM F ACK;
25 nlh−>nlmsg seq=seq=time (NULL) ;
26

27 h d r s i z=s izeof (struct genlmsghdr)) ;
28 gen l=mnl n lmsg put extra header (nlh , h d r s i z) ;
29 genl−>cmd=CTRL CMD GETFAMILY;
30 genl−>ve r s i o n =1;
31

32 m n l a t t r p u t s t r n u l l (nlh ,
33 CTRL ATTR FAMILY NAME,
34 argv [1]) ;
35

36 numbytes=mnl n lmsg get l en (nlh)) ;
37

38 nl=mnl socket open (NETLINK GENERIC) ;
39 i f (n l == NULL) {
40 pe r ro r (” mnl socket open ”) ;
41 e x i t (EXIT FAILURE) ;
42 }
43

44 i f (mnl socket b ind (nl , 0 , 0) < 0) {
45 pe r ro r (” mnl socket b ind ”) ;

18

46 e x i t (EXIT FAILURE) ;
47 }
48

49 i f (mnl socket sendto (nl , nlh , numbytes) < 0){
50 pe r ro r (” mnl socket send ”) ;
51 e x i t (EXIT FAILURE) ;
52 }
53

54 r e t=mnl socket recv f rom (nl , buf , s izeof (buf)) ;
55 while (r e t > 0) {
56 r e t=mnl cb run (buf , ret , seq , data cb , NULL) ;
57 i f (r e t <= 0)
58 break ;
59 r e t=mnl socket recv f rom (nl , buf , s izeof (buf)) ;
60 }
61 i f (r e t == −1) {
62 pe r ro r (” e r r o r ”) ;
63 e x i t (EXIT FAILURE) ;
64 }
65 m n l s o c k e t c l o s e (n l) ;
66

67 return 0 ;
68 }

Listing 14: GeNetlink family and multicast resolver

The resolver initially checks for the required family name as argument (lines
17-20). Then, it starts by building the Netlink header (lines 22-25) in which the
message type is GENL ID CTRL that is the fixed ID of the GeNetlink control
family (GENL ID CTRL equals 16 which is the first available message type
for Netlink headers, lower values are reserved for Netlink control messages).
It follows the GeNetlink header building (lines 27-30) in which the command
used to retrieve the GeNetlink family information is CTRL CMD GETFAMILY
(line 29). The payload of the message is composed of one Netlink attribute that
contains the GeNetlink family name that we want to retrieve information.

Then, we open the Netlink socket (lines 38-42) using the NETLINK GENERIC
bus which corresponds GeNetlink. We bind it to no multicast groups (lines 44-
47) and we finally send the message (lines 49-52). Then, we wait for the reply
(line 54 and 59) and we handle the data received by means of the callback run-
queue (line 56) which calls the function data cb() to perform the interpretation
of the reply. If no GeNetlink family was found, we receive a Netlink message
that contains the ENOENT error (No such entry exists).

We have represented the function data cb() in Listing. 15.

1 stat ic int
2 data cb (const struct nlmsghdr ∗nlh , void ∗data)
3 {
4 struct n l a t t r ∗ tb [CTRL ATTR MAX+1] ;
5 struct genlmsghdr ∗ gen l =
6 mnl nlmsg get data (nlh) ;
7

8 m n l a t t r p a r s e a t o f f s e t (nlh , s izeof (∗ gen l) ,
9 tb , CTRL ATTR MAX) ;

10 i f (tb [CTRL ATTR FAMILY ID]) {

19

11 p r i n t f (” fami ly−id : %d\n” ,
12 mnl a t t r g e t u16 (tb [CTRL ATTR FAMILY ID])) ;
13 }
14 i f (tb [CTRL ATTR MCAST GROUPS]) {
15 p r i n t f (” mu l t i c a s t −> id \n”) ;
16 parse mc grps (tb [CTRL ATTR MCAST GROUPS]) ;
17 }
18

19 return MNL CB OK;
20 }

Listing 15: Digesting GeNetlink control messages

This function parses the payload of the message (lines 8-9) and it sets the
array of pointers to access the attributes. Then, we check if the family ID
attribute is available in the message (line 10). If so, the routine displays the
family ID (lines 11-12) which is required to fill the Netlink type to send a message
for that family. Moreover, the routine parses the set of multicast groups that
are available in the GeNetlink family (line 16).

The set of multicast groups available in a given family is stored in a three-
level nesting. The first level uses the attribute type CTRL ATTR MCAST GROUPS,
then the second level contains a set of attribute types starting by 1 to n, where n
is the number of multicast groups available. Finally, the third level contains the
attributes CTRL ATTR MCAST GRP NAME, which contains the multicast
group name, and CTRL ATTR MCAST GRP ID, that is the ID of that given
multicast group. We have represented the multicast group parsing in Listing.
16.

1 stat ic void
2 parse one mc group (struct n l a t t r ∗pos)
3 {
4 struct n l a t t r ∗ tb [CTRL ATTR MCAST GRP MAX+1] ;
5

6 m n l a t t r p a r s e n e s t e d (pos , tb ,
7 CTRL ATTR MCAST GRP MAX) ;
8 i f (tb [CTRL ATTR MCAST GRP NAME] &&
9 tb [CTRL ATTR MCAST GRP ID]) {

10 p r i n t f (”\”%s \” −> %d\n” ,
11 m n l a t t r g e t (tb [CTRL ATTR MCAST GRP NAME]) ,
12 mnl a t t r g e t u32 (tb [CTRL ATTR MCAST GRP ID])) ;
13 }
14 }
15

16 stat ic void
17 parse mc grps (struct n l a t t r ∗ nested)
18 {
19 struct n l a t t r ∗pos ;
20 int l en ;
21 const char ∗mcast grp name ;
22 int mcast grp id ;
23

24 m n l a t t r f o r e a c h n e s t e d (pos , nested , l en)
25 parse one mc group (pos) ;
26 }

20

Listing 16: Parsing GeNetlink multicast groups

Basically, the function parse mc groups() (lines 16-26) iterates over the sec-
ond level of nested attributes (lines 24-25) and parses it by means of parse one mc groups()
(line 25). This function parses the attributes (lines 6-7) and it displays the mul-
ticast group name and the ID (lines 10-12).

Now that we have a program to obtain the GeNetlink family ID and the
multicast group ID, we can implement the user-space support for our example
GeNetlink Linux kernel module that we have previously represented in Listings.
9, 10, 11, 12 and 13. We have implemented the GeNetlink version of two
programs that we have previously discussed in Section ??, they are:

• change.c that can be used to update the myvar variable. This program
takes as first argument the GeNetlink family ID that we have obtained
from the resolver.

• event.c that allows to subscribe to events of our example GeNetlink family.

In Listing. 17, we show the implementation of the change.c program. To
update the myvar variable, we initially build the Netlink header (lines 24-27),
whose message type has been obtained by means of the resolve program and
it has been passed as argument (line 25). It follows the GeNetlink header
(lines 29-31) and the payload that contains the attribute NLE MYVAR that
encapsulates the new value of myvar that has been passed as second argument
(line 33). Then, we open the Netlink socket (line 37) and bind it to no multicast
groups (line 42) and send it (line 48). We wait for the reply from kernel-space
(line 54) and pass the data received to the runqueue callback (line 60) to handle
the acknowledgment received in return to inform about the operation success
or failure. The routines ends by closing the Netlink socket (line 65).

1 #include <s t d i o . h>
2 #include <s t d l i b . h>
3 #include <un i s td . h>
4

5 #include <l ibmnl / l ibmnl . h>
6 #include <l i nux / g e n e t l i n k . h>
7

8 #include ” genlexample . h”
9

10 int main (int argc , char ∗argv [])
11 {
12 char buf [g e t p a g e s i z e ()] ;
13 struct nlmsghdr ∗nlh ;
14 struct genlmsghdr ∗ gen l ;
15 struct mnl socket ∗ nl ;
16 int ret , hdrs i z , numbytes ;
17 unsigned int seq , oper ;
18

19 i f (argc != 3) {
20 p r i n t f (”%s [Family ID] [myvar]\n” , argv [0]) ;

21

21 e x i t (EXIT FAILURE) ;
22 }
23

24 nlh = mnl nlmsg put header (buf) ;
25 nlh−>nlmsg type = a t o i (argv [1]) ;
26 nlh−>n l m s g f l a g s = NLM F REQUEST | NLM F ACK;
27 nlh−>nlmsg seq = seq = time (NULL) ;
28

29 h d r s i z = s izeof (struct genlmsghdr)) ;
30 gen l = mnl n lmsg put extra header (nlh , h d r s i z) ;
31 genl−>cmd = NLEX CMD UPD;
32

33 mnl at t r put u32 (nlh ,NLE MYVAR, a t o i (argv [2]) ;
34

35 numbytes = mnl n lmsg get l en (nlh) ;
36

37 nl = mnl socket open (NETLINK GENERIC) ;
38 i f (n l == NULL) {
39 pe r ro r (” mnl socket open ”) ;
40 e x i t (EXIT FAILURE) ;
41 }
42 r e t = mnl socket b ind (nl , 0 , 0) ;
43 i f (r e t == −1) {
44 pe r ro r (” mnl socket b ind ”) ;
45 e x i t (EXIT FAILURE) ;
46 }
47

48 r e t = mnl socket sendto (nl , nlh , numbytes) ;
49 i f (r e t == −1) {
50 pe r ro r (” mnl socket send ”) ;
51 e x i t (EXIT FAILURE) ;
52 }
53

54 r e t = mnl socket recv f rom (nl , buf , s izeof (buf)) ;
55 while (r e t == −1) {
56 pe r ro r (” recvfrom ”) ;
57 e x i t (EXIT FAILURE) ;
58 }
59

60 r e t = mnl cb run (buf , ret , seq , NULL, NULL) ;
61 i f (r e t == −1) {
62 pe r ro r (” c a l l b a c k ”) ;
63 e x i t (EXIT FAILURE) ;
64 }
65 m n l s o c k e t c l o s e (n l) ;
66 }

Listing 17: change.c for GeNetlink

We have represented the event subscription program in Listing. 18. This
routine initially opens a Netlink socket (line 38) and it binds to no multicast
groups (line 44). Since the common binding operation only allows to subscribe
by means of a group mask (Thus, this allows to subscribe up to the limited
number 32 groups.), we use the socket option NETLINK ADD MEMBERSHIP
(lines 50-53) which allows to subscribe to a group by an integer. Thus, we
can subscribe to any of the existing 232 multicast groups. This multicast ID is

22

passed as first argument to the program and it has been previously obtained by
means of the resolve program.

Once we are subscribed to the event reporting, we wait for event messages
(lines 55 and 60) and we handle the messages received by means of the callback
runqueue (line 57) that invokes the data cb() function. This function parses the
payload of the GeNetlink messages received (lines 17-18) and it displays the new
value (lines 20-21).

1 #include <s t d i o . h>
2 #include <s t d l i b . h>
3 #include <un i s td . h>
4

5 #include <l ibmnl / l ibmnl . h>
6 #include <l i nux / g e n e t l i n k . h>
7

8 #include ” genlexample . h”
9

10 stat ic int
11 data cb (const struct nlmsghdr ∗nlh , void ∗data)
12 {
13 struct n l a t t r ∗ tb [NLE MAX+1] ;
14 struct n l a t t r ∗ a t t r ;
15 int h d r s i z = s izeof (struct genlmsghdr) ;
16

17 m n l a t t r p a r s e a t o f f s e t (nlh , hdrs i z ,
18 tb , NLE MAX) ;
19 i f (tb [NLE MYVAR])
20 p r i n t f (”myvar=%u\n” ,
21 mnl a t t r g e t u32 (tb [NLE MYVAR])) ;
22

23 return MNL CB OK;
24 }
25

26 int main (int argc , char ∗argv [])
27 {
28 struct mnl socket ∗ nl ;
29 char buf [g e t p a g e s i z e ()] ;
30 struct nlmsghdr ∗nlh = (struct nlmsghdr ∗) buf ;
31 int ret , grp ;
32

33 i f (argc != 2) {
34 p r i n t f (”%s [GeNL mul t i ca s t ID]\n” , argv [0]) ;
35 e x i t (EXIT FAILURE) ;
36 }
37

38 nl = mnl socket open (NETLINK GENERIC) ;
39 i f (n l == NULL) {
40 pe r ro r (” mnl socket open ”) ;
41 e x i t (EXIT FAILURE) ;
42 }
43

44 r e t = mnl socket b ind (nl , 0 , 0) ;
45 i f (r e t == −1) {
46 pe r ro r (” mnl socket b ind ”) ;
47 e x i t (EXIT FAILURE) ;
48 }

23

49

50 grp = a t o i (argv [1]) ;
51 mnl socke t s e t s o ckopt (nl ,
52 NETLINK ADD MEMBERSHIP,
53 &grp , s izeof (grp)) ;
54

55 r e t = mnl socket recv f rom (nl , buf , s izeof (buf)) ;
56 while (r e t > 0) {
57 r e t = mnl cb run (buf , ret , 0 , data cb ,NULL) ;
58 i f (r e t <= 0)
59 break ;
60 r e t=mnl socket recv f rom (nl , buf , s izeof (buf)) ;
61 }
62 i f (r e t == −1) {
63 pe r ro r (” e r r o r ”) ;
64 e x i t (EXIT FAILURE) ;
65 }
66

67 m n l s o c k e t c l o s e (n l) ;
68

69 return 0 ;
70 }

Listing 18: event.c for GeNetlink

24

